The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 8: Black Swans and Other Risks)

While the future can be exciting and an adventure, there are unanticipated events that occur that can disrupt normal flows and operations (Maritz, 2019). On the extreme, there have been catastrophes that seemed “acts of god”, events that are not contemplated in this series of blogs yet provide some context (Maritz, 2019; Gibbons, 2018). More predictable and relevant to our lifetimes, the Cascadia Fault off the coasts of Oregon and Washington is predicted to rupture in the next 50 years and could be the worst North American human disaster on record with significant costs in lives lost and property damage. The damage to roads, bridges, airports, transit, railroads, and navigable waterways will significantly reduce the ability to respond and recover. This event is being studied and planned for (Bauer, et al, 2018; Roth and Thompson, 2018; Sounds, 2019; Steele, 2020).

Risk management is the identification, evaluation, and prioritization of risks followed by methodologies to minimize, monitor, and control the probability or impact of unfortunate events or to maximize the realization of opportunities. The U. S. transportation industry has enormous risk exposure and among the most risk-prone industries in the world. As such, the federal transportation act—Moving Ahead for Progress in the 21st Century Act or MAP-21 and signed into law in 2012—established the requirement for states to develop a risk-based asset management plan. Risk management is a dynamic process and used routinely within the public and private sectors. Without such plans, organizations can be surprised by events that have negative financial impacts or missed positive opportunities with improved outcomes. The literature on risk management is rich and evolving. A Black Swan is an unpredictable event that is beyond what is normally expected and has the potential for severe consequences. Risks must be identified at the beginning of a project or program, discussed, and updated regularly. Some typical risks might include scope, schedule, and budget issues; safety issues; liability issues; site condition issues; dispute issues; quality issues; workforce turnover or other staffing issues; weather or other delays; contract interpretation disputes; rework; prompt payment; opportunities for additional work; priorities; owner readiness; and so on. Regardless, it is critical to identify risks, actions to prevent or mitigate new risks, probability of occurrence, and a champion/responsible party to take the lead. Various means of identifying the probability of risks are also important such as Monte Carlo simulation.

The Covid-19 Pandemic is a glaring and recent example of positive and negative impacts and could be categorized as a Black Swan. It could not have been anticipated although pandemics are a certainty. As risks do, it is also having positive and negative impacts. For example, remote work and quarantining are reducing CO2 emissions (IEA, 2020;  Figure 9), online shopping continues to increase versus brick and mortar stores (Ali, 2021), costs associated with commuting and office space (Boland, et al, 2020; Ambrose, 2020), and reducing traffic congestion (Ronan, 2021). Some reports are that certain categories of online shopping and delivery increased 50-125 percent in 2020 compared to 2019.  However, already disadvantaged populations are disproportionately negatively affected and transit faces an existential threat in 2021 and beyond due to the reduction of ridership and associated revenues.

As many as 572 airports are also threatened by global warming and associated sea level rise by 2021 (Yesudian and Dawson, 2021). A record number of hurricanes, wildfires and floods cost the world $210 billion in damage in last year, much of it due to global warming. The six most expensive disasters of 2020 occurred in the U.S. (NOAA, 2021; Kann, 2021). There is also the threat of land subsidence that may affect 19 percent of the world population by 2040 (Herrera-Garcia, et al, 2021).

As of this writing, over 30 million U. S. citizens have tested positive for COVID-19 and over 500,000 deaths. That is more than 1 in 9 that have been diagnosed with the disease. Under more normal conditions before the pandemic, there was not a public transit system that was not subsidized. Even with vaccines being fielded, the future of transit ridership and revenues is far from certain. The course for the foreseeable future, without federal help, is to reduce services. Black Swans and other events may be giving us a “pause” to rethink transportation/mobility.

FIGURE 9. Estimated world CO2 reductions during pandemic in 2020. Reductions were 17 percent during the first peak in spring but have declined to 7 percent, the biggest drop ever, over the course of the year, with negligible long-term climate improvements (Sourced from: München, 2020).

As weather patterns change, commodities and other flows are interrupted and delayed. The recent Texas utility debacle from unusual winter weather is yet another risk that could have been precluded and mitigated. People and companies lost heat, potable water and waste water services, and have and are experiencing injuries, death, and economic hardships—a series of cascading failures (Northey, 2021). During the crisis, unregulated utilities charged a market cap price of $9,000 per mega-watt hour  (McGinty and Patterson, 2021). The lack of preparation was made worse by delaying commodities including food and Covid-19 vaccinations. Moreover, Texas utilities were warned 10 years earlier of the preparation needed but they ignored the risks (Blunt and Gold, 2021). This is a failure of leadership.

In addition to individual risks typically identified in risk assessments, there can also be risk correlations between work breakdown structure (WBS) elements, events, risks of projects, across projects, and programs. Some of these might include (modified from Prieto, 2020):

  • “Money Allocated Is Money Spent”
  • Parkinson’s Law – work expands to fill the time allotted
  •  Overconfidence in assessing uncertainties
  • Complexity with hidden coupling – risk events are likely to affect multiple cost elements with the potential for cascading impacts
  • State of technology – common new technologies/materials
  • Common management, staff and work processes
  • Optimism bias and other biases consistently applied
  • Overly simplistic probabilistic cost analysis (PCA)
  • Wages, benefits, payroll taxes Productivity
  • Raw material costs
  • Design development
  • Means & methods
  • Uncertainty factors/known unknowns
  • Budgeting and contingency management strategy and approach
  • Packaging and contracting strategy
  • Schedule precedences
  • Shared/common assumptions
  • Failures/delays at interfaces
  • Location factors
  • Trade actions
  • Regulatory changes/actions
  • Low frequency high impact events of scale
  • Archaeology finds

So risks, associations of risks, and Black Swans can be complicated and reflect the nature of the mobility ecosystem, systems, and systems of systems, in general. Megaprograms and projects (over $1 billion) are particularly prone (Denicol, et al, 2020; Vartabedian, 2021; Garmo, et al, 2015; Irimia-Diéguez, et al, 2014; Zidane, et al, 2013; Flyvbjerg and Bruzelius, 2014).

Dr. “Kevin” Bao also provides an interesting perspective on how leaders should respond to crises and opportunities (Steele, 2021).

Citations

Ali, F. (2021, January 29). US ecommerce grows 44.0% in 2020. Digital Commerce 360. Retrieved February 27, 2021, from https://www.digitalcommerce360.com/article/us-ecommerce-sales/

Ambrose, J. (2020, August 12). BP mulls radical reduction of office space in move to flexible working. The Guardian. Retrieved February 27, 2021, from https://www.theguardian.com/business/2020/aug/12/bp-mulls-radical-reduction-of-office-space-in-move-to-flexible-working

Bauer, J. M., W. U. Burns, I. P. Madin. (2018). Earthquake regional impact analysis for Clackamas, Multnomah, and Washington Counties, Oregon. Oregon Department of Geology and Mineral Industries. Retrieved February 27, 2021, from https://www.oregongeology.org/pubs/ofr/O-18-02/O-18-02_report.pdf

Blunt, K. and R. Gold. (2021, February 19). The Texas freeze: why the power grid failed. The Wall Street Journal. Retrieved February 27, 2021, from https://www.wsj.com/articles/texas-freeze-power-grid-failure-electricity-market-incentives-11613777856

Boland, B., A. D. Smet, R. Palter, A. Sanghvi. (2020, June 8). Reimagining the office and work life after COVID-19. McKinsey & Company. Retrieved February 27, 2021, from https://www.mckinsey.com/business-functions/organization/our-insights/reimagining-the-office-and-work-life-after-covid-19

Denicol, J., A. Davies, I. Krystallis. (2020, February 13). What are the causes and cures of poor megaproject performance? A systematic literature review and research agenda. Project Management Journal. Retrieved February 27, 2021, from https://journals.sagepub.com/doi/10.1177/8756972819896113

Flyvbjerg, B., N. Bruzelius, W. Rothengatter. (2014, July). Megaprojects and risk: an anatomy of ambition. Cambridge University Press. Retrieved February 27, 2021, from https://www.cambridge.org/core/books/megaprojects-and-risk/78B4E0A8FDBEC72919B832D33BECF083

Garemo, N., S Matzinger, R. Palter. (2015, July 1). Megaprojects: the good, the bad, and the better. McKinsey & Company. Retrieved February 27, 2021, from https://www.mckinsey.com/business-functions/operations/our-insights/megaprojects-the-good-the-bad-and-the-better

Gibbons, A. (2018, November 15). Why 536 was ‘the worst year to be alive.’ Science. Retrieved February 27, 2021, from https://www.sciencemag.org/news/2018/11/why-536-was-worst-year-be-alive

Herrera-Garcia, G., P. Ezquerro, R. Tomás, M. Béjar-Pizarro, J. López-Vinielles, M. Rossi, R. M. Mateos, D. Carreón-Freyre, J. Lambert, P. Teatini, E. Cabral-Cano, G. Erkens, D. Galloway, W. Hung, N. Kakar, M. Sneed, L. Tosi, H. Wang, S. Ye. (2021, January 1). Mapping the global threat of land subsidence. Science. Retrieved February 27, 2021, from https://science.sciencemag.org/content/371/6524/34

IEA. (2020, April). Global energy review 2020: the impacts of the Covid-19 crisis on global energy demand and CO2 emissions. Institute of Economic Affairs. Retrieved February 27, 2021, from https://www.iea.org/reports/global-energy-review-2020/global-energy-and-co2-emissions-in-2020

Irimia-Diéguez, A. I., A. Sanchez-Cazorla, R. Alfall-Luque. (2014, March 19). Risk management in megaprojects. Procedia – Social and Behavioral Sciences. 119:407-416. Retrieved February 27, 2021, from https://www.sciencedirect.com/science/article/pii/S1877042814021375#!

Kann, D. (2021, February 22). Flood risk is growing for US homeowners due to climate change. Current insurance rates greatly underestimate the threat, a new report finds. CNN Business. Retrieved February 27, 2021, from https://www.cnn.com/2021/02/22/business/flood-insurance-climate-change-risk-first-street-foundation/index.html

Maritz, W. (2019, July 22). Critical risk areas for public infrastructure projects – Part 1. Oracle Construction and Engineering Blog. Retrieved February 27, 2021, from https://blogs.oracle.com/construction-engineering/critical-risk-areas-for-public-infrastructure-projects?source=:ad:ba:::RC_BUMK200210P00079:SmartBrief_FY20Q4&pcode=BUMK200210P00079&SC=ADV

McGinty, T. and S. Patterson. (2021, February 24). Texas electric bills were $28 billion higher under deregulation. The Wall Street Journal. Retrieved February 27, 2021, from https://www.wsj.com/articles/texas-electric-bills-were-28-billion-higher-under-deregulation-11614162780

München, L. (2020, November 12). Pandemic leads to decrease in global CO2 emissions. ETH Zürich. Retrieved February 27, 2021, from https://usys.ethz.ch/en/news-events/news/archive/2020/12/rekord-rueckgang-der-globalen-CO2-Emissionen-wegen-Corona.html

NOAA National Centers for Environmental Information. (2021). Billion-dollar weather and climate disasters: overview. NOAA. Retrieved February 27, 2021, from https://www.ncdc.noaa.gov/billions/

Northey, H. (2021, February 24). ‘Cascading failures’ fueled Texas water disaster. E&E News. Retrieved February 27, 2021, from https://www.eenews.net/stories/1063725903

Prieto, B. (2020, December 3). The impact of correlation on risks in programs and projects. PM World Journal. Vol. IX(XII)):1-11. Retrieved February 27, 2021, from https://pmworldjournal.com/article/the-impact-of-correlation-on-risks-in-programs-and-projects

Ronan, D. (2021, February 24). Top bottlenecks less congested last year, but infrastructure needs persist, ATRI finds. Transport Topics. Retrieved February 27, 2021, from https://www.ttnews.com/articles/top-bottlenecks-less-congested-last-year-infrastructure-needs-persist-atri-finds

Roth, S. and J. Thompson. (2018, March 15). Study projects damage from rare Portland Hills quake, Cascadia earthquake. KGW8. Retrieved February 27, 2021, from https://www.kgw.com/article/weather/earthquakes/study-projects-damage-from-rare-portland-hills-quake-cascadia-earthquake/283-528827359

Sounds, S. (2019, September 8). The mega Cascadia earthquake is overdue and could strike the US West coast at any moment, creating huge 30 meter-high tsunami waves within seconds – please prepare for this apocalyptic event. Strange Sounds. Retrieved February 27, 2021, from https://strangesounds.org/2019/09/the-mega-cascadia-earthquake-is-overdue-and-could-strike-the-west-coast-of-the-us-at-any-moment-creating-huge-30-metre-high-tsunami-waves-within-seconds-prepare-for-this-apocalyptic-event.html

Steele, B. (2020, January 27). Getting ready for the next Great Cascadia Subduction Zone earthquake. Pacific Northwest Seismic Network. Retrieved February 27, 2021, from https://pnsn.org/blog/2020/01/27/getting-ready-for-the-next-great-cascadia-subduction-zone-earthquake

Steele, J. (2021, February 22). CEOs should develop an ambivalent mindset in crises, says UAH professor’s research. University of Alabama in Huntsville. Retrieved February 27, 2021, from https://www.uah.edu/news/items/ceos-should-develop-an-ambivalent-mindset-in-crises-says-uah-professor-s-research

Vartabedian, R. (2021, February 22). A ‘low-cost’ plan for California bullet train brings $800 million in overruns, big delays. Los Angeles Times. Retrieved February 27, 2021, from https://www.latimes.com/california/story/2021-02-22/california-bullet-train-dragados-design-changes

Yesudian, A. N. and R. J. Dawson (2021). Global analysis of sea level rise risk to airports. Climate Risk Management 31, 2021, 100266:1-12. Retrieved February 27, 2021, from https://www.sciencedirect.com/science/article/pii/S2212096320300565

Zidane, Y. J. T., A. Johansen, A. Ekambaram. (2013, March). Megaprojects-challenges and lessons learned. Procedia – Social and Behavioral Sciences. 74:349-357. Retrieved February 27, 2021, from https://www.researchgate.net/publication/257718827_Megaprojects-Challenges_and_Lessons_Learned

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 7: Maximizing Results with Limited Funding)

There is never enough funding in any organization to meet the needs, much less the wants. The debates to determine funding and how to allocate it are endless and continue to this day at all levels of government (Ryan, 2021). Typically, the effective use of available funding falls to public sector transportation professionals, unless private-sector owners, in conjunction with private sector partners. Thus, it is important to review some analytic tools, methodologies, and aspects for maximizing results with limited funding. These could loosely be considered part of asset management. A more thorough review of asset management, setting a basis, criteria, and priorities, is on the March 6, 2016, article on this website entitled Transportation Asset Management. This discussion merely augments that discussion and is by no means an exhaustive list. In no particular order, these are some of the more important tools, methodologies, and aspects that can help establish priorities and maximize results with limited funding.

  • Asset Management: Every public and private body is under increasing pressure to justify investment and that it is making the best use of its resources. The essence of asset management is to better prioritize resources to optimize outcomes, basically institutionalizing a business-like approach to managing infrastructure—asset management. The ability to retain, retrieve, and analyze increasing amounts of data in recent decades has enabled evidence-based decision-making on a network scale. Made possible by computers and digital technology, other “big picture” analyses are increasingly emerging to include the discipline of sustainability that facilitates decision-making among economic, social, and environmental realms. Performance metrics also began to evolve at the same time as asset management. The result is a fundamental framework for managing resources or assets:
    • Performance measures: what target is desired and achievable
    • Asset:
      • Inventory
      • Condition
      • Utilization
      • Value in dollars
    • Life-cycle cost prediction: estimate remaining useful life
    • Agency or organization cost
    • User cost
    • Trade-off analysis and investment strategies (by combining the above to produce an optimized budget)—criteria to develop needs priorities
    • Develop an emergency fund for unexpected events
    • Develop program including asset needs priorities with available funding

      Asset management is quite literally the best of continuous improvement. That process never ends. More discussion can be found on this website under transportation asset management.
  • Scope, Schedule, Budget: This is closely related to Planning, design, below. Regardless, as a program or project is contemplated, a preliminary and final scope, schedule, and budget must be developed. Tied to the next bullet point, it is common for scope to creep or an ill-defined scope to create problems later on. As such, that can lead to schedule and budget problems later. This is especially prevalent in mega and giga programs and projects. The takeaway: spend the time necessary up front to conduct thorough due diligence, planning, risk assessment, and scoping. It is a lot better and a lot less expensive in time, money, and resources to do it right the first time vice the second or more times. Effective and efficient program or project controls are essential to track changes against the baseline contract of scope, schedule, and budget.
  • Planning, Design: There is no substitute for good, solid planning and design. This in no way discounts good construction, maintenance, operations, materials, and other practices. These can all save or optimize dollars when done right. However, many times problems and opportunities missed can be traced back to the beginning of planning and design. It can be a challenge and take time to get input and reviews from construction, maintenance, operations, stakeholders, and partners. It is worth the effort to do things right or as well as possible at the beginning. Otherwise, time and money will be expended later and opportunities will likely be lost. More broadly, open-source engineering can be more valuable economically and in terms of building on standard design specifications. Thus providing more cost-effective projects, more innovation, improved quality, and scalability. (Shepherd-Smith, 2021).
  • Needs Assessments, Criteria, and Priorities: This may appear obvious, and as stated above it is discussed in more detail in other blogs. Regardless, this process is essential in setting priorities for what to do first, second, third, and so on in spending on the highest priorities. While many governments do this, all do not. The larger, more capable governments tend to do this a lot more than smaller governmental, typically more rural, cities and counties. This typically manifests itself in state departments of transportation doing thorough needs assessments while smaller, less populated cities and counties have neither the staff or funding to do this. This can be a problem. This can be similar in non-highway modes. One solution is to generate one multimodal needs assessment for states, cities, and counties. To gain consensus on such a mechanism would be Herculean but not impossible. As it is, each entity has its own way of identifying needs and setting priorities and the challenge increases as governments establish “formulas” in an attempt to equitably distribute funding to the highest needs. This manifests itself in several ways such as donor and donee states relative to the federal Highway Trust Fund, earmarks depending on the power of elected officials, competitive grants which typically leave out smaller, more rural communities, and others. These are all an attempt to do the best we can but they also fall short. The net result—the inability to fund the highest needs. While it is true that federal and state highways carry the vast majority of traffic, the needs of rural communities are of equal importance. So, the idea of a multimodal and multigovernmental needs assessment should be aspired to if not accomplished. There are some rare examples of similar efforts in other areas that have been successful such as the State of Iowa developing one common state-city-county design manual. Also, the State of Nebraska requires an annual needs assessment (with inventory, standard criteria, inspections, estimated scope and cost, etc) for their state highway system so that the state legislature has a target to determine funding. Uniquely, Nebraska law has a variable fuel tax that adjusts the state fuel tax to meet that funding, regardless of impacts such as decreased fuel consumption due to pandemics or other unforeseen events. A system that effectively prioritizes limited funding to address the needs of one seamless transportation/mobility system would be invaluable to our society vice each governmental entity struggling on its own. While this may never be achieved, it is worth aspiring to.
  • Design Exceptions, Practical Design, and Least-cost Planning: Until perhaps the last two decades, the standards for planning and design were fairly rigidly followed, partly due to liability risks of not doing so. That is understandable because of the importance of standards. However, as funding continues to be tight as needs grow, exceptions have increasingly been made. This evolution began as design exceptions to established standards, to somewhat broader exceptions termed practical design, and that has evolved into more recently termed least-cost planning. The core purpose of all is to maximize results with limited funding where a high proportion of benefits can be gained while accepting little or no additional risk. These are of course highly scrutinized for approval but can save considerable dollars. One mega program in Oregon had 275 design exceptions which saved $683 million.
  • Alternative Delivery Methodologies: Alternative delivery methodologies have been around for decades in the form of contracts of which the U. S. Army Corps of Engineers has been one of the more innovative. In 1993 the Design-Build Institute of America (DBIA) agreed upon the term design-build and its use among transportation agencies began to accelerate. Originally established to save time, not money, design-build projects have evolved to save time and money (Figure 8). Other integrated delivery methodologies have also begun to emerge such as design-build-operate, design-build-operate-maintain, construction management-general contractor, public-private-partnerships, and others, each designed for a specific purpose in saving the owner time, money, level of oversight, or all three. The key is that integrated delivery teams can work together, resulting in time and money savings for the owner. Embedded is risk and who has it, but that’s another subject that warrants a paper on its own.
FIGURE 8. Design-build compared to other project delivery methods. Source: DBIA, n.d.
  • Materials: This may seem out of place but it is not. High-strength steel is a good example of allowing wider gaps to be spanned with fewer vertical supports and girders. Superpave asphalt mixes compete effectively with concrete depending on the costs of oil, cement, and other commodities. Likewise, steel can compete against concrete and accrue savings. Fiberglass reinforced-polymer girders and other corrosion-resistant features have also been employed to extend the design life of bridges to at least 100 years (Knapschaefer, 2021). 3D printed bridges and other structures can save on time and labor (U.S. Bridge, 2021).
  • Recycling: Recycling is about saving resources and money. Asphalt, concrete, and steel are regularly recycled by owners and construction contractors, through both on-site and off-site processes. Depending on the strength, bridge girders are utilized on other bridges as appropriate. Old rail cars have been recycled as low cost-culverts where appropriate. One of the more innovative recycling methods being studied is to use old wind turbine blades in bridges as well as buildings, etc., rather than placing them in landfills (Stone, 2021).
  • Engineering Economics: This tool has been around for over 100 years but continues to be relevant although other tools now supplement it and can lead to other conclusions.
  • Life Cycle Costs: This tool has been around for over 100 years although it has been refined during that time. As our perspectives have increasingly become long-term versus short-term or a human lifetime, the life cycle of infrastructure, vehicles, and other assets have taken on additional meaning relative to least-cost decision-making. Therefore, the life cycle cost of any asset is critical to know.
  • Return on Investment (ROI): Commonly known as ROI, this is another analytical tool that can have myriad perspectives. That is the ROI in economic terms, jobs created or sustained, environmental values, social values, and so forth. Regardless, knowing the return on dollars expended is a critical part of decision-making.
  • Benefit-Cost (BC): Benefit-Cost is commonly assessed as a ratio, normally calculated in dollars. Frequently shown as an equation such as a BC ratio of 3:1 or B/C and if the numerator or B is greater than the denominator, then it is concluded to be a benefit. If the numerator or B is less than 1 it is considered a net cost and not a benefit. Nonetheless, this is another important tool in determining investments.
  • Economies of Scale: This is a methodology that can provide a return on scale. For example, “bundling” projects within a region can reduce mobilization and material delivery costs. Conversely, breaking projects up has the potential to increase competition and reduce costs. While this is not a new concept, it is valuable. The term “bundle” is a relatively new term and is now commonly used. Previously, other terms such as “tied projects” were used to describe the same methodology. Buying materials, equipment, and other assets at scale can also provide economies of scale and reduce costs.
  • Multimodal Needs Assessments: Typically, needs assessments have been done by asset or mode with critically important and useful outcomes. As mobility has become increasingly multimodal, the question has become how to conduct needs assessments across all modes. Multimodal planning is common but multimodal needs assessments are largely qualitative, not standardized, and not widely accepted. One of the outcomes in the absence of good, repeatable, and reliable multimodal needs assessments is that funding (federal and state) is distributed based on modal assessments, dominated by highways and bridges, and then a somewhat subjective assessment of how to distribute dollars to each mode. Until we achieve a truly standardized multimodal needs assessment with specific criteria, allocating funds to other modes (such as transit and pedestrians) will be a challenge. Generally, transportation is not a particularly partisan topic at governmental levels, partly because it provides objective information to help determine what funds can or will be appropriated and what the long-term implications may be. This is critical for the built environment in which we live.
  • Operations and Intelligent Transportation Systems (ITS): ITS was one outcome of advancing digital technology. What this allowed was the transportation system to be instrumented with sensors that provide data and information, especially on volume and speed, to a central office that can more quickly and effectively assess and respond to congestion and issues stemming from traffic congestion, crashes, and other incidences. Advanced Traffic Management System (ATMS) is used for traffic management and control and accounts for the most revenue in the overall ITS market. Although the benefit-costs of ITS vary widely from 2-9:1, others exceed 100:1. One ratio used for comparing ITS to more infrastructure is 8:1, a methodology to get more capacity from the existing roadway. The prudent use of ITS technologies can achieve greater benefit at less cost than more concrete, asphalt, and steel. Related, vehicle pricing systems such as electronic toll collection, congestion pricing, vehicle miles traveled, and other road user charging systems can be cost-effective. In addition, transport and supply chain service providers are seeking cost-effective solutions that ITS can provide to boost their productivity, performance, and profits. On e example developed early in Nebraska was a statewide oversize-overweight permitting system that allowed truckers to efficiently route their trucks and cargo and became an effective decision-making tool.
  • Internet of Things or IoT: There are benefits to be gained throughout society by leveraging IoT, including in government, and new opportunities are continually being uncovered to improve services and efficiencies (Center for Digital Government, 2019; AT&T, n.d.; ServiceNow, n.d.; Descant, 2019).
  • Partnerships and Collaboration: It is virtually impossible for any organization to have all the talent, tools, and resources to optimize returns for society, the economy, and our environment. As such, partnerships and collaboration are keys to leveraging the unique strengths of an organization. This is not a new concept, but like the exponential growth of our 4th Industrial or Digital Age, the need is greater than ever before. These strategies continue to grow (Salesforce, n.d.).
  • Program and Project Management: Good program and project management begins and ends with good leadership. The team is all-important since they are the ones that get work done. As such, good leadership can make a team better while bad leadership can destroy a team. This easily translates to improved or decreased performance, costs, and profits. This topic is also discussed in other blogs on leadership, program, and project management on this website. There are many articles and books on program and project management, one of the most prolific and best is Robert Prieto who publishes regularly in PM World. He also authored one of the most comprehensive books on the subject, “Theory of management of large complex projects” (Prieto, 2015). Also, review PMWorld Journal, https://pmworldjournal.com/welcome, and the Project Management Institute (https://www.pmi.org).
  • Risk Management: This is the identification, evaluation, and prioritization of risks followed by methodologies to minimize, monitor, and control the probability or impact of unfortunate events or to maximize the realization of opportunities. The U. S. transportation industry has enormous risk exposure and among the most risk-prone industries in the world. As such, the federal transportation law—Moving Ahead for Progress in the 21st Century Act, or MAP-21, and signed into law in 2012 (FMCSA, n.d.)—established the requirement for states to develop a risk-based asset management plan. Risk management is a dynamic process and used routinely within the public and private sectors. Without such plans, organizations can be surprised by events with negative financial impact or miss positive opportunities with improved outcomes. The literature on risk management is rich and continues to evolve.
  • Strong Relationships: This is another topic that might seem odd within a discussion of maximizing results with limited funding. However, the adage “a good relationship can make a bad contract better while a bad relationship can make a good contract worse” reflects the importance of strong relationships. It is common to have disputes but resolving them in a fair and amicable way while preserving the all-important relationships is critical. No one really wins when disputes move to litigation. This topic is further discussed in other blogs on this website, including the importance of trust.
  • Safety: This may seem an odd topic within the topic of maximizing results with limited funding but the cost in lives, injuries, and property damage is staggering. As has been stated, virtually every transportation organization has the safety of their employees and traveling public as their highest priority. One of these efforts to improve safety, although for NASCAR racing, has important implications for the traveling public (Midwest Roadside Safety Facility, n.d.; Wikipedia, 2021). The work towards a safer built environment will likely never end.

This is by no means meant to be an exhaustive list and is only intended as a sample. The search to reduce costs is part of continuous improvement and that never ends. There are some very simple changes that cumulatively can have huge impacts including the use of LED bulbs in traffic signals and buildings, the use of highly reflective tape rather than electric lit signs, shutting off computers during overnight hours, and so on. This, again, is in no way a substitute for sound and skilled planning, project development, design, construction, maintenance, and operations, all of which continue to evolve and improve within their own discipline.

The Biden Administration recently announced through their Infrastructure for Rebuilding America grants or INFRA some of the above tools and methods as part of their criteria in addition to other related criteria such as climate change, environmental justice, and racial equity (Ichniowski, 2021). Still, other technologies are being advanced with their own inherent efficiencies (New Hampshire Union Leader, 2021; VIA, n.d.; LeBeau, 2021; Danko, 2021; Ewoldsen, 2021). Other technologies that may seem a bit far-fetched continue to advance and may be part of a transportation future and at less cost (Levy, 2021; Subin, 2021; Halvorson, 2021). Still, other areas are advancing, including space, and may well have cost-effective impacts on our futures on earth (Adams, 2021; Hughes, 2020).

Citations

Adams, R. D. (2021, January 21). AI spacefarers and cosmic testbeds: robust robotic systems forge path for human space exploration. TechRepublic. Retrieved February 20, 2021, from https://www.techrepublic.com/article/ai-spacefarers-and-cosmic-testbeds-robust-robotic-systems-forge-path-for-human-space-exploration

AT&T (n.d.) Creating Better Communities. Government Technology. Retrieved February 20, 2021, from https://media.erepublic.com/document/GT18_HANDBOOK_ATT_Slides_V.pdf

Center for Digital Government. (2019). IoT innovation: how government is uncovering new opportunities. Center for Digital Government sponsored by Cisco. Retrieved February 20, 2021, from https://media.erepublic.com/document/CDG18_WHITE_PAPER_Cisco-IoT-NewOps_V.pdf

Danko, P. (2021, February 3). Arcimoto’s latest stock surge gives it $1B market cap. Portland Business Journal. Retrieved February 20, 2021, from https://www-bizjournals-com.cdn.ampproject.org/c/s/www.bizjournals.com/portland/news/2021/02/03/arcimotos-market-cap-1b.amp.html

DBIA. (n.d.). Why choose design-build? Design-Build Institute of America. Retrieved February 20, 2021, from https://dbia.org/what-is-design-build/

Descant, S. (2019, October 29). Chicago collaboration looks to redefine modern transportation. Government Technology. Retrieved February 20, 2021, from https://www.govtech.com/transportation/Chicago-Collaboration-Looks-to-Redefine-Modern-Transportation.html

Ewoldsen, B. (2021, January 21). New mobility services combined with transit show potential to further accessibility, efficiency, equity, safety, and sustainability. Transportation Research Board. Retrieved February 20, 2021, from http://www.trb.org/main/blurbs/181729.aspx

FMCSA. (n.d.). MAP-21 – moving ahead for progress in the 21st century act. Federal Motor Carrier Safety Administration. Retrieved February 20, 2021, from https://www.fmcsa.dot.gov/mission/policy/map-21-moving-ahead-progress-21st-century-act

Halvorson, B. (2021, February 15). Toyota claims the 2021 Mirai fuel-cell car cleans the air, calls it “minus emissions.” Green Car Reports. Retrieved February 20, 2021, from https://www.greencarreports.com/news/1131268_toyota-claims-the-2021-mirai-fuel-cell-car-cleans-the-air-calls-it-minus-emissions

Hughes, O. (2020, November 25). To the moon and beyond: the robots that are blazing a trail for human space exploration. TechRepublic. Retrieved February 20, 2021, from https://www.techrepublic.com/article/to-the-moon-and-beyond-the-robots-that-are-blazing-a-trail-for-human-space-exploration

Ichniowski, T. (2021, February 17). Biden administration adds new climate objective for INFRA grants. Engineering News-Record. Retrieved February 20, 2021, from https://www.enr.com/articles/51239-biden-administration-adds-new-climate-objective-for-infra-grants

Knapschaefer, J. (2021, January 25). Novel fiberglass birders extend life of Maine bridge. Engineering News-Record. Retrieved February 20, 2021, from https://www.enr.com/articles/51086-novel-fiberglass-girders-extend-life-of-maine-bridge

LeBeau, P. (2021, February 10). United Airlines orders electric vertical aircraft, invests in urban air mobility SPAC. CNBC Evolve. Retrieved February 20, 2021, from https://www.cnbc.com/2021/02/10/united-airlines-orders-electric-vertical-aircraft-invests-in-urban-air-mobility-spac.html

Levy, M.G. (2021, February 12). Researchers levitated a small tray using nothing but light. Wired. Retrieved February 20, 2021, from https://www.wired.com/story/researchers-levitated-a-small-tray-using-nothing-but-light/

Midwest Roadside Safety Facility. (n.d.). The safer barrier. University of Nebraska-Lincoln. Retrieved February 20, 2021, from https://mwrsf.unl.edu/saferBarrier.php

New Hampshire Union Leader. (2021, February 15). State-of-the-art traffic signals installed at 17 Dover intersections. New Hampshire Union Leader. Retrieved February 20, 2021, from https://www.unionleader.com/news/safety/state-of-the-art-traffic-signals-installed-at-17-dover-intersections/article_672c26f7-cfcb-5ea2-bd9f-befb1a46d840.html

Prieto, R. (2015). Theory of management of large complex projects. Construction Management Association of America. Retrieved February 20, 2021, from https://www.researchgate.net/publication/299980338_Theory_of_Management_of_Large_Complex_Projects

Salesforce. (n.d.). Accelerating government innovation through collaboration. Salesforce. Retrieved February 20, 2021, from https://media.erepublic.com/document/GOV19_BRIEF_Salesforce_01_V.pdf

ServiceNow. (n.d.). Redefining service delivery for citizens: best practices and a checklist for success. ServiceNow. Retrieved February 20, 2021, from https://media.erepublic.com/document/ebook-government-modernizing-csm.pdf

Shepherd-Smith, P. (2021, February 10). Open source engineering has a role to play in digital transformation. New Civil Engineer. Retrieved February 20, 2021, from https://www.newcivilengineer.com/opinion/open-source-engineering-has-a-role-to-play-in-digital-transformation-10-02-2021/

Stone, M. (2021, January 8). Today’s wind turbine blades could become tomorrow’s bridges. Grist. Retrieved February 20, 2021, from https://grist.org/energy/todays-wind-turbine-blades-could-become-tomorrows-bridges/

Subin, S. (2021, February 14). Why one big Wall Street banker is betting flying taxis will replace helicopters. CNBC Evolve. Retrieved February 20, 2021, from https://www.cnbc.com/2021/02/14/why-wall-street-banker-thinks-flying-taxis-will-replace-helicopters.html

Thomas, R. (2021, January 29). Lawmakers offer competing priorities for infrastructure plans. The Hill. Retrieved February 20, 2021, from https://thehill.com/policy/transportation/infrastructure/536595-lawmakers-offer-competing-priorities-for-infrastructure

U.S. Bridge. (2020, March 24). The future of 3D printed bridges and construction. U.S. Bridge. Retrieved February 20, 2021, from https://usbridge.com/the-future-of-3d-printed-bridges-and-construction/

VIA. (n.d.). Reimagining how the world moves. VIA. Retrieved February 20, 2021, from https://ridewithvia.com/?utm_source=pardot&utm_medium=email&utm_campaign=newsletter_february_2021

Wikipedia. (2021, January 24). Safer barrier. Wikipedia. Retrieved February 20, 2021, from https://en.wikipedia.org/wiki/SAFER_barrier

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 6: Funding)

While there is never enough money to address the needs, there is not a transportation agency in the Nation that is not struggling with the lack of funding, largely due to the Pandemic 2020-present whether it’s fuel taxes, general funds, bonds, public-private-partnerships, wheel taxes, vehicle registrations, or other funding sources (American Society of Civil Engineers, 2020; Stofan, 2021; NPR, 2020; Jimenez, 2020). Still, are we talking about infrastructure the right way? That is, are we talking to and the about the people that use it (Milberg, 2021)?

In 2019 the U. S. federal government spent $96 billion on building and updating infrastructure, $67 billion was transferred to states. In 2017, the most recent data available, state and local infrastructure spending totaled $162 billion excluding these federal transfers. At the same time there has been a shift toward increased spending on operations and maintenance and away from spending on new capital projects. Some estimates are that roughly 2/3 of dollars go to keep infrastructure functioning (i.e. maintenance, repair, replacement, or system preservation) while roughly 1/3 of dollars go to upgrades (i.e. new capital projects). While this allocation can be disputed depending on the audience and perspective, keeping infrastructure functioning (system preservation) is the highest and best use of dollars and most economical in serving the public good. How dollars are best allocated for system preservation and new capital projects needs to be continually assessed, typically on an annual basis in conjunction with needs assessments and specific criteria. The current (2017) American Society of Civil Engineers, or ASCE, Report Card identifies an estimated $2 trillion gap in the $4.6 trillion needs required to achieve a state of good repair over the next 10 years (American Society of Civil Engineers, 2017). For surface transportation alone the gap is estimated to be $1.1 trillion gap in the over $2 trillion needs over the next 10 years. Perhaps more sobering, the world is facing a $15 trillion infrastructure gap by 2040 (George, et al, 2019).

Since the creation in 1919 by the State of Oregon, the fuel tax has been the primary federal and state funding mechanism  for transportation/mobility infrastructure for over 100 years. The past two decades have seen a decline in those fuel tax revenues as a result of little or no increase in many fuel taxes, improving fuel efficiency, alternatives fuels, and now a pandemic. To close those gaps, general funds, wheel taxes, vehicle registrations, bonds, and other sources have been used. Still the gaps exist.

A question: should the US align with the UN’s “people first” model for public-private infrastructure projects? The model evaluates projects on five criteria (United Nations Economic Commission for Europe, 2016):

  • Increasing access and promoting equity
  • Improving environmental sustainability
  • Improving project economic effectiveness
  • Ensuring replicability
  • Engaging all stakeholders

While there is important movement in this direction, it probably comes down to whether the needs of all stakeholders can be reconciled—consultants, builders, financiers, politicians, businesses, the public and others—that oversee infrastructure development and come to consensus on what they are doing. These can be powerful interests and getting people to work together, much less collaborate and come to consensus, will continue to be a challenging task to scale up the funding to meet growing needs.

So, what is the likely funding source for the future? That is unknown. A few years ago many believed that a Vehicle Miles Traveled (VMT) tax being tested over the past two decades in Oregon and other states would prevail and might yet. However, emerging technologies, declining personal car ownership, electric vehicles, alternatives fuels, remote work, changing business models, sustainability, climate change, access, equity and social justice, and future physical infrastructure needs may warrant new funding sources. Regardless, it is clear a new, reliable, and sustainable transportation/mobility funding model is needed that balances urban, rural, and multimodal needs and with an eye to the future. This includes a review of criteria for allocating funds, taking into account the needs of urban and rural communities, connecting roads and modes, and the capabilities of smaller communities who do not have the staffs to accommodate the substantial federal processes. The federal government must partner with states, communities, and other partners and entities to make funding and its allocation as effective and efficient as possible. While traffic is much higher with more costly infrastructure needs in urban areas, there are also critical needs in rural areas although there is less traffic (NAFB, 2021).

The funding space is also changing. Black Rock Chairman and Chief Executive Officer, Larry Fink, in his 2020 letter to CEOs has stated “In the near future—and sooner than most anticipate—there will be a significant reallocation of capital” (Fink, 2020). This is driven by their investors demand for investments that are sustainable and that will limit climate change. Black Rock is the world’s largest asset manager with $17 trillion under management, has said its clients are looking to double their environmental, societal, and governance (ESG) investments in the next five years. Institutional investors have said they will stop investing in companies that are not sustainable (CISION PR Newswire, 2021; Losavio and Tsai, 2021). This has implications for transportation, infrastructure, and mobility. To that extent it is not a surprise that stocks such as Tesla experienced dramatic growth in 2020 as investors look for positive and sustainable environmental, societal, governance, and economic outcomes.

Citations

American Society of Civil Engineers, ASCE. (2017). ASCE. Retrieved February 14, 2021, from https://infrastructurereportcard.org/wp-content/uploads/2016/10/2017-Infrastructure-Report-Card.pdf

American Society of Civil Engineers, ASCE. (2020). Status Report: Covid-19’s impacts on America’s infrastructure. ASCE. Retrieved February 14, 2021, from https://www.infrastructurereportcard.org/wp-content/uploads/2020/06/COVID-19-Infrastructure-Status-Report.pdf

CISION PR Newswire. (2021, January 7). The $120 trillion investment trend transforming Wall Street. CISION. Retrieved February 14, 2021, from https://www.prnewswire.com/news-releases/the-120-trillion-investment-trend-transforming-wall-street-301202526.html

Fink, L. (2020). Larry Fink’s 2020 letter to CEOs: A fundamental reshaping of finance. BlackRock. Retrieved February 14, 2020, from https://www.blackrock.com/us/individual/larry-fink-ceo-letter

George, A., R. Kaldany, J. Losavio. (2019, April 11). The world is facing a $15 trillion infrastructure gap by 2040. Here’s how to bridge it. World Economic Forum. Retrieved February 14, 2021, from https://www.weforum.org/agenda/2019/04/infrastructure-gap-heres-how-to-solve-it/

Jimenez, F. (2020, September 17). Impact of COVID-19 on state transportation revenues. LAO-Legislative Analyst’s Office. Retrieved February 14, 2021, from https://lao.ca.gov/Publications/Report/4268

Losavio, J. and O. Tsai. (2021, January 18). 4 big infrastructure trends to build a sustainable world. World Economic Forum. Retrieved February 14, 2021, from https://www.weforum.org/agenda/2021/01/four-big-infrastructure-trends-for-2021/

Milberg, E. (2021, January 8). Are we talking about infrastructure the right way? SmartBrief. Retrieved February 14, 2021, from https://www.smartbrief.com/original/2021/01/are-we-talking-about-infrastructure-right-way

NAFB. (2021, January 30). Rural coalition sends letter to Biden on infrastructure. KTIC. Retrieved February 14, 2021, from https://kticradio.com/agricultural/rural-coalition-sends-letter-to-biden-on-infrastructure/

NPR. (2020, August 3). States are broke and many are eyeing massive cuts. Here’s how yours is doing. NPR KIOS. Retrieved February 14, 2021, from https://www.npr.org/2020/08/03/893190275/states-are-broke-and-many-are-eyeing-massive-cuts-heres-how-yours-is-doing

Stofan, J. (2021, February 9). Bumpy road ahead for Florida transportation projects. News4Jax. Retrieved February 14, 2021, from https://www.news4jax.com/news/florida/2021/02/09/bumpy-road-ahead-for-florida-transportation-projects/

United Nations Economic Commission for Europe-UNECE. (2016, July). Promoting people first public-private partnerships (PPPs) for the UN SDGs. Inter-Agency Task Force on Financing for Development. Retrieved February 14, 2021, from https://www.un.org/esa/ffd/wp-content/uploads/2016/01/Promoting-People-first-Public-Private-Partnerships-PPPs-for-the-UN-SDGs_UNECE_IATF-Issue-Brief.pdf

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas. (Part 5: Some Other Technology Advances)

There is a mounting need from city and road planners to evolve current ground-based infrastructure, especially across transportation networks (Deruytter, 2020). There are a number of technologies, and collections of technologies, that are changing and impacting the mobility space. In Part 4, this writer neglected to acknowledge one of these leading transportation technology centers that is bringing the industry together to develop transportation and mobility solutions—the Infrastructure Automotive Technology Laboratory, or iATL, and iATL Partner Alliance in Georgia. The Intelligent Transportation Society of America (ITSA)—Smarter, Greener, Safer—began in 1991 and has been a primary convention and driver for use of transportation technologies in the intervening 30 years. Below is a brief scan of some of these technologies, each of which could warrant a book to provide a complete coverage.

  • Vehicle-to-Vehicle (V2V) and Vehicle to Infrastructure (V2I): These are the two primary connected vehicle areas and encompass CAV (connected and automated vehicle). The advantage of V2V is to gain capacity from infrastructure and improve safety (NHTSA, n.d.). This technology may also enable increased speeds and reduce travel time. V2I is beginning to advance as a means of further advancing capacity, safety, and speed. Both V2V and V2I offer the potential to expand other technologies such as battery charging while moving, autonomous routing of vehicles, and providing intelligent infrastructure with the capability of autonomously sending condition and other reports back to a central office for planning and response for repair or replace (RoboticsBiz, 2020; 3M, n.d.).
  • Intelligent Infrastructure: In addition to being able to send condition and other reports for action to a central office, emerging AI technologies are allowing for self-healing materials that repair themselves (Flower, 2020; Mazzarol, 2012; McFarlane, 2015; McMillan, 2017; ScienceDirect, n.d.).
  • Internet of Things or IoT: Infrastructure and transportation agencies are leading the way in adopting many IoT technologies, and that will continue. Why? Because they provide tangible results (Center for Digital Government for Spectrum Enterprise, 2019).
  • 3D Printers: These printers have existed for some time but are expanding for construction. This includes the printing of the small 3D plastic models for completing concrete bridges to the printing of steel bridge models (U.S. Bridge, 2020). The basic limitation is only the size of the printing machine and whether that is cost effective.
  • Materials: Whereas 3D printers are limited by the size of the printing machine, new research is revealing the possibility of rationally designing materials to specification at the micro and macro scale and with broad engineering applications (Jenett et al, 2020). Plus, traditional materials continue to be improved such as ultra-high performance concrete (Carter, 2019).
  • Artificial Intelligence (AI): This is a leading technology of technologies, combining various technologies into new ones that can perform tasks thought to be science fiction. One of these is “robotic swarms” of meta materials that turn into buildings, vehicles, bridges—delivered in boxes by drones (Jenett, 2020; Wyss Institute, n.d.). The technology currently exists and the U. S. Army has initiated this development in partnership with the private sector including the Massachusetts Institute of Technology. Still others are in use such as Building Information Technology or BIM. Others include AI-driven asset management for bridges, monitoring the condition of assets on a real and near-real time basis (Stone, 2021). Yet another focuses on road maintenance (Holliday and Frick, 2021). Ford Motor Company has expanded to leverage AI and machine learning to predict and prevent traffic crashes (Mendoza, 2021). The future of AI is enormous in the transportation and mobility space, and society as a whole (The Washington Post, n.d).
  • Virtual (VR) and Augmented Reality (AR): Beginning in the gaming business, these technologies continue to rapidly develop, especially in the design and construction arenas. A recent augmented reality innovation by VW and Mercedes Benz enhances safe navigation through an AR blue line down the center line of the lane, allowing the driver to stay focused on the road ahead (Ligon 2021).
  • Robotics/Drones: These technologies have been in development and use for decades. Like other technologies that reduce the requirement for labor (typically the largest single cost for many organizations) within the mobility space these technologies are increasingly used for terrestrial and aquatic inspections of all kinds, vegetation planting, surveying, aerial photography, movement and delivery of materials, and others. There is continuing discussion on the use of drones, including the potential to lease air space above roads and perhaps generating a new revenue source (Skorup and Harland, 2020;  Pressgrove, 2021).
  • Machine Control: Expanding on robotics and drones that are currently used is the programming of autonomous earthmoving and other equipment, surveying, inspections, etc., on construction sites (TopCon, n.d.; UK Plant Operators, n.d.). These have been in use for some years and allow for greater efficiency at a lower cost. Using currently available technology, other systems are emerging for other activities such as hauling dirt, delivery and placement of materials. Expanding on this area, some years ago the University of Nebraska developed remotely controlled orange work zone barrels to move without the labor required for moving each barrel (Bauer, 2004). This technology could be adopted to other systems, such as the Lindsay Company Road Zipper which moves concrete Jersey barriers on a near-real time basis to adjust lanes and contra flows in conjunction with traffic flow needs, separate bicycle from vehicle traffic, adjust to the needs of construction zones, etc. In effect, this could be done remotely or autonomously. The options are endless and open to continued innovation.
  • Cloud services: There are a growing number of organizations that are leveraging the cloud for more efficient operations. Among them is Amazon Web Services (AWS) which has a growing presence in the transportation and mobility space (Silver, n.d.). Municipal and state agencies continue to expand use of cloud services for construction oversight and other activities (Yoders, 2021).
  • 5G: This technology holds tremendous promise as it increases the speed and capacity of communications essential to the mobility ecosystem (Abbosh and Downes, 2019). The Internet of Things or IoT is a driver of 5G with three broad categories of use: enhanced broadband, massive IoT sensing, and critical IoT. The massive IoT sensing alone will allow 10 times more devices to connect at 100 times the energy efficiency compared to LTE-Advanced (Little, 2019).  Smart cities are being advanced thanks to 5G and other technologies (CBS Interactive Inc., 2020; Abbosh and Downes, 2019). 5G and its capabilities are expanding as this is written. 5G and AI will continue to drive mobility development.
  • Lidar: This technology has been around for some years, allowing for rapid 3D surveying by law enforcement, surveying by drones, autonomous vehicles, improving safety, enhanced BIM (Building Information Modeling), and other diverse applications that go on and on (Shacklett, 2021). One recent application makes transportation infrastructure more efficient and safer (Clark, 2021).
  • Global Positioning Systems (GPS): Although around for decades, GPS is worth mentioning because of its importance in pinpointing locations, navigation, and its ease of use (available on smartphones and many other devices). This is critical for many technologies including autonomous vehicles.
  • 5.9 GHz: This bandwidth had been identified for public safety with important uses in the transportation arena. However, recently the Federal Communications Commission or FCC has given this bandwidth away for other commercial purposes. This sorely complicates an important safety tool for the transportation industry (Fisher, 2020).
  • Communications, integrated and interoperable-voice and data: The most common lesson-learned following disasters is the difficulty of communicating between all parties in both voice and data (FEMA, 2020; FEMA, 2014; OnSolve, n.d.; U.S. Fire Administration, 2015). As such, many states have developed more robust and interoperable communications systems. Nonetheless, effective communications is literally a key to success in responding to man-made or natural disasters and will need to be continually improved and maintained.
  • Solar: Solar power is developing slowly, but surely, as one of the most important renewable energies. For over 100 years, petroleum-based fuels and electricity generation have been separate industries. Oil was for vehicles, coal and water were for electric power. Drillers versus miners, petrostates versus power utilities. With EVs the distinction between petroleum-based fuels and power markets is blurring. Solar power is rapidly becoming the cheapest form of energy in much of the world, which means that as power markets grow to meet the new demand from EVs, oil is being largely displaced by power from the sun. For nearly 20 years, the International Energy Agency has underestimated the rise of solar power. Every year, their estimates expected the rate of solar growth to plateau, but every year it grew (Figure 7).
FIGURE 7. Sunshine may be the new oil. Every year solar was projected to plateau, and every year it set new records. (Sources: International Energy Agency, BloombergNEF, Auke Hoekstra, in “Peak Oil is Suddenly Upon Us” by Tom Randall and Hayley Warren, Bloomberg Green December 1, 2020)

Solar roadways have been developed in France these past few years. It was recently announced that the first solar roadway to come on line in the U. S. will be in Georgia (Cooke, 2017; Edelstein, 2020).

  • Cyber-security: There is an arms race going on to hack and secure data. As technology has developed so has the need for adequate cyber-security. It is wise to have one, if not at least two, backup systems to protect transportation/mobility systems, including autonomous vehicles. Every organization continues to struggle with enhancing security (Center for Digital Government, 2020).

There are literally thousands of other technologies and associated tools in the transportation/mobility industry, and other fields, that continue to be developed, some proprietary and some not, in an effort to increase sales/profits and benefit-cost. A scan of printed and electronic trade journals, conferences, proposals, and sales presentations reflects the stunning scale of these developments. A brief scan reveals advanced and integrated project and program management, data collection and workflow automation, big data and analysis, remote piloted aerial and aquatic vehicles or drones, machine learning, Lidar, ground penetrating radar, geomatics, geophysics, Reality Mesh Services (i.e. 3D models out of unordered photographs or laser scans), Building Information Modeling (BIM) across the project life cycle while incorporating Reality Capture for Digital Twins and integrated for Asset Management, and many, many others.

This also does not discount the importance and value of the myriad existing methodologies that continue to advance, have been around for years, and that can increase system efficiency. Just a few include data collection and analysis, signal timing, static signing, variable message signs, 511, video cameras, radar, roadway weather notifications, traffic operations centers and infrastructure sensors, materials, recycling, planning, design, construction, maintenance, operations, and so on.

Literature Cited

3M Road Safety. (n.d.). What is Vehicle-to-Infrastructure (V2I) communication and why do we need it? 3M. Retrieved February 13, 2021, from https://www.3m.com/3M/en_US/road-safety-us/resources/road-transportation-safety-center-blog/full-story/~/what-is-vehicle-to-infrastructure-v2i-communication-and-why-do-we-need-it/?storyid=021748d7-f48c-4cd8-8948-b7707f231795

Abbosh, O. and L. Downes. (2019, March 5). 5G’s potential, and why businesses should start preparing for it. Harvard Business Review. Retrieved February 13, 2021, from https://hbr.org/2019/03/5gs-potential-and-why-businesses-should-start-preparing-for-it

Bauer, S. (2004, April 30). Robotic traffic cones hit the road. ABC News. Retrieved February 13, 2021, from https://www.nbcnews.com/id/wbna4872379

Carter, T. (2019, May 2). Corps of Engineers grant Virginia company exclusive commercial license for Cor-Tuf ultra-high performance concrete. TechLink. Retrieved February 13, 2021 from https://techlinkcenter.org/news/corps-of-engineers-grant-virginia-company-exclusive-commercial-license-for-cor-tuf-ultra-high-performance-concrete/

Center for Digital Government. (2020). Delivering services citizens can trust: how the city of Seattle became a privacy-first organization. Active Network. Retrieved February 13, 2021, from https://media.erepublic.com/document/CDG19_CASE_STUDY_Active_Network_Seattle_V.pdf

CBS Interactive Inc. (2020). 5 Successful Smart City Projects. CBS Interactive Inc. Retrieved February 13, 2021, from https://static.cbsileads.com/direct/whitepapers/TR_5_successful_smart_cities.pdf

Center for Digital Government. (2019). Infrastructure and transportation: government finds its IoT footing. Spectrum Enterprise. Retrieved 13 February, 2021 from https://media.erepublic.com/document/CDG18_REPORT_Spectrum2_V.pdf

Clark, D. (2021, January 26). Analysis touts lidar sensor efficiency, safety. Transportation Today. Retrieved February 13, 2021, from https://transportationtodaynews.com/news/21212-analysis-touts-lidar-sensor-efficiency-safety/

Cooke, L. (2017, February 7). First Wattway solar road pilot in US pops up in rural Georgia. InHabitat. Retrieved February 13, 2021, from https://inhabitat.com/first-wattway-solar-road-pilot-in-us-pops-up-in-rural-georgia/#popup-898928

Deruytter, M. (2020, December 18). Intelligent infrastructure in transport & mobility: paving the way for a smarter and safer future. ITProPortal. Retrieved February 13, 2021 from https://www.itproportal.com/features/intelligent-infrastructure-in-transport-and-mobility-paving-the-way-for-a-smarter-and-safer-future/

Edelstein, S. (2020, December 6). Georgia gets first solar roadway in the US. Green Car Reports. Retrieved February 13, 2020, from https://www.greencarreports.com/news/1130542_georgia-gets-first-solar-roadway-in-the-us

FEMA. (2020, August 3). Disaster emergency communications. FEMA. Retrieved February 13, 2021, from https://www.fema.gov/about/offices/field-operations/disaster-emergency-communications

FEMA. (2014). Lesson 3. communicating in an emergency. FEMA. Retrieved February 13, 2021, from https://training.fema.gov/emiweb/is/is242b/student%20manual/sm_03.pdf

Fisher, T. (2020, November 23). 5.9 Ghz spectrum and transportation technology, explained) Land Line. Retrieved February 13, 2021, from https://landline.media/5-9-ghz-spectrum-and-transportation-technology-explained/

Flower, T. (2020, June 30). Intelligent infrastructure explained. RailUK. Retrieved February 13, 2021, from https://railuk.com/featured/intelligent-infrastructure-explained/

Holliday, J. and S. Frick. (2021, January 27). Podcast: The role of AI in the future of roads maintenance with FMConway and Roadbotics. The Engineers Collective. Retrieved February 13, 2021 from https://theengineerscollective.podbean.com/e/the-role-of-ai-in-the-future-of-roads-maintenance-with-fmconway-and-roadbotics/

Jenett, B, C. Cameron, F. Tourlonousis, A. Parra Rubio, M. Ochalek, N. Gershenfeld. (2020, November 18). Discretely assembled mechanical metamaterials. ScienceAdvances AAAS. Retrieved February 13, 2021, from https://advances.sciencemag.org/content/6/47/eabc9943

Ligon, L. (2021, January 12). Driver experience with augmented reality head-up display. Fox10 News. Retrieved February 13, 2021, from https://www.fox10tv.com/news/daily_dot_com/driver-experience-with-augmented-reality-head-up-display/article_7e8b7e62-553c-11eb-9a2d-a36148115811.html

Little, A. (2019, September). 5G and IoT: the time to act is now. Sprint Business. Retrieved February 13, 2021, from https://connect.bizjournals.com/rs/673-UWY-229/images/5G%20and%20IOT%20eBook.PDF

Mazzarol, T. (2012, June 23). Intelligent infrastructure: when roads and vehicles talk to each other. The Conversation. Retrieved February 13, 2013, from https://theconversation.com/intelligent-infrastructure-when-roads-and-vehicles-talk-to-each-other-7865

McFarlane, D. (2015, March 9). What makes an intelligent infrastructure asset. Infrastructure Intelligence. Retrieved February 13, 2021, from http://www.infrastructure-intelligence.com/article/mar-2015/what-makes-intelligent-infrastructure-asset

McMillan, F. (2017, December 21). The rise of self-healing materials. Forbes. Retrieved February 13, 2021, from https://www.forbes.com/sites/fionamcmillan/2017/12/21/the-rise-of-self-healing-materials/?sh=596e514f64c3

Mendoza, N.F. (2021, January 21). Smart city: Windsor is first Canadian city to launch Ford Safety Insights Platform to reduce crashes. Tech Republic. Retrieved February 13, 2021 from https://www.techrepublic.com/article/smart-city-windsor-is-first-canadian-city-to-launch-ford-safety-insights-platform-to-reduce-crashes/

NHTSA. (n.d.). Vehicle-to-Vehicle Communication. United States Department of Transportation. Retrieved February 13, 2021, from https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communication

OnSolve. (n.d.). Exploring how 9/11 impacted emergency communication. OnSolve. Retrieved February 13, 2021, from https://www.onsolve.com/blog/sept-11-impact-emergency-communication/

Pressgrove, J. (2021, January 29). Will ‘highway systems’ better prepare states for drones? Government Technology. Retrieved February 13, 2021, from https://www.govtech.com/products/Will-Highway-Systems-Better-Prepare-States-for-Drones.html

Randall, T. and H. Warren. (2020, November 30). Peak oil is suddenly upon us. Bloomberg. Retrieved February 13, 2021, from https://www.bloomberg.com/graphics/2020-peak-oil-era-is-suddenly-upon-us

RoboticsBiz. (2020, August 21). Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) explained. RoboticsBiz. Retrieved February 13, 2021, from https://roboticsbiz.com/vehicle-to-vehicle-v2v-and-vehicle-to-infrastructure-v2i-explained/

ScienceDirect. (n.d.). Self-healing material. ScienceDirect. Retrieved February 13, 2021, from https://www.sciencedirect.com/topics/materials-science/self-healing-material

Shacklett, M. (2021, February 10). 3D scanning, lidar, and drones: Big data is helping law enforcement solve crimes. TechRepublic. Retrieved February 13, 2021, from https://www.techrepublic.com/article/3d-scanning-lidar-and-drones-big-data-is-helping-law-enforcement-solve-crimes/

Silver, P. (n.d.). Transportation. AWS. Retrieved February 13, 2021, from https://aws.amazon.com/stateandlocal/transportation/

Skorup, B. and C. Haaland. (2020, March). Which states are prepared for the drone industry? A 50-state report card. Mercatus Center, George Mason University. Retrieved February 13, 2021, from https://www.mercatus.org/system/files/skorup-drone-report-card-mercatus-research-v1_1.pdf

Stone, T. (2021, January 25). New AI-driven asset management for bridges to be used in Australia for first time. Traffic Technology International (TTI). Retrieved February 13, 2021, from https://www.traffictechnologytoday.com/news/asset-management/new-ai-driven-asset-management-for-bridges-to-be-used-in-australia-for-first-time.html

The Washington Post. (n.d.). The fast track to AI. DXC Technology. Retrieved February 13, 2021, from https://www.washingtonpost.com/brand-studio/dxc-technology-fast-track-to-ai/

TopCon. (n.d.). Machine control—the basics. TopCon. Retrieved February 13, 2021, from https://www.topconpositioning.com/gb/insights/machine-control-basics

UK Plant Operators. (n.d.). Guide to machine control. UK Plant Operators. Retrieved February 13, 2021, from https://ukplantoperators.com/guide-to-machine-control/

U.S. Bridge. (2020, March 24). The future of 3D printed bridges and construction. U.S. Bridge. Retrieved February 13, 2021 from https://usbridge.com/the-future-of-3d-printed-bridges-and-construction/

U.S. Fire Administration. (2015, June). Operational lessons learned in disaster response. FEMA. Retrieved February 13, 2021, from https://www.usfa.fema.gov/downloads/pdf/publications/operational_lessons_learned_in_disaster_response.pdf

Wyss Institute. (n.d.). Programmable robot swarms. Wyss Institute, Harvard University. Retrieved February 13, 2021, from https://wyss.harvard.edu/technology/programmable-robot-swarms/

Yoders, J. (2021, January 27). State and municipal agencies expand use of cloud construction oversight. Engineering News-Record. Retrieved February 13, 2021, from https://www.enr.com/articles/51122-state-and-municipal-agencies-expand-use-of-cloud-construction-oversight?oly_enc_id=8197J3323267G9M

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas. (Part 4: Economics of Autonomous Vehicles)

Motorized vehicles began with the advent of electric vehicles as evidenced by the first recorded powered vehicle fatality in the United States in 1899, from an electric taxi (see Part 2 of this series). Technology advances in the intervening 100 plus years have given rise to fully autonomous vehicles which are on the horizon.

The summary (abstract) provided by Clements and Kockelman (2017) is superb and provided in full.

“Connected and fully automated or autonomous vehicles (CAVs) may soon dominate the automotive industry. Once CAVs are sufficiently reliable and affordable, they will penetrate markets and thereby generate economic ripple effects throughout industries. This paper synthesizes and expands on existing analyses of the economic effects of CAVs in the United States across 13 industries and the overall economy. CAVs will soon be central to the automotive industry, with software composing a greater share of vehicle value than previously. The number of vehicles purchased each year may fall because of vehicle sharing, but rising travel distances may increase vehicle sales. The opportunity for heavy-truck drivers to do other work or rest during long drives may lower freight costs and increase capacity. Personal transport may shift toward shared autonomous vehicle fleet use, reducing that of taxis, buses, and other forms of group travel. Fewer collisions and more law-abiding vehicles will lower demand for auto repair, traffic police, medical, insurance, and legal services. CAVs will also lead to new methods for managing travel demand and the repurposing of curbside and off-street parking and will generate major savings from productivity gains during hands-free travel and reduction of pain and suffering costs from crashes. If CAVs eventually capture a large share of the automotive market, they are estimated to have economic impacts of $1.2 trillion or $3,800 per American per year. This paper presents important considerations for CAVs’ overall effects and quantifies those impacts.”

See Table 1 for a summary of the economic impacts of autonomous vehicles.

TABLE 1. Table 1. Summary of economic effects (industry- and economy-wide) (source: Clements, L. M. and Kockelman, K. M., “Economic effects of automated vehicles”, Transportation Research Record: Journal of the Transportation Research Board Volume 2606, Issue 1, January 2017, pages 106-114)

In the columns headed “Dollar Change in Industry” and “Percent Change in Industry,” signs “+” and “-”, respectively, denote a gain and a loss for the industry, whereas the industry-specific total for the dollar change in industry is the sum of their absolute values. Figures in the “$/Capita” columns and provided as overall total represent the sum of net economic benefits enjoyed by consumers.

According to an estimate by Intel Corporation and Strategy Analytics, announced in June 2017, the economic effects of autonomous vehicles will total $7 trillion in 2050 (Figure 6). The dollar amount represents a newly created value or a new ‘passenger economy’, calculated based on the assumption that fully automated Level 5 vehicles will be on the roads by 2050.

Figure 6. Global service revenue generated by autonomous driving in 2050 (US$ millions) (source: Lanctot, R. Strategy Analytics, Accelerating the Future: The Economic Impact of the Emerging Passenger Economy, June 2017)

They also assumed that consumers and businesses will use Mobility-as-a-Service (MaaS) offerings instead of owning cars, and those who had been commuting to work by car will become passengers and spend the commuting time doing something else. Furthermore, transportation companies suffering from a serious labour shortage – such as long-haul truck operators and home delivery service providers – will introduce autonomous driving services, thereby enabling them to change their business models drastically. As such, the estimate reflects a very broad range of potential effects, which also include a wide variety of new commercial services such as onboard dining and retailing (Tomita, 2017).

Advancements continue almost daily. CNN Business (Farland, 2020) reports a self-driving and electric robotaxi from Amazon’s Zoox can travel up to 75 mph and never has to turn around, reversing directions as needed to navigate crowded city streets. In an effort to become a leader in this sector, China is advancing autonomous vehicles quickly, including fully autonomous highways (Metha, 2019; KPMG International, 2019).

There are a myriad of challenges to realize fully automated vehicles and that will require an accumulation of massive quantities of data and learning processes to enable the development of AI capable of coping with navigating the rules, laws, traffic control devices, unique infrastructure, and nuances in each city, county, and state, not to mention internationally. Moreover, developing soft infrastructure, including laws and regulations, and setting rules for liability arising from accidents involving autonomous vehicles will be challenging. Similar to the open ITS architecture established by USDOT, there is a need to establish AV architecture within the U. S., if not internationally.

The advent of fully automated driverless vehicles will have a tremendous impact on our society, bringing fundamental changes to the entire economic and social systems. When fully automated vehicles come into operation, they will become a major means of mobility for the elderly and infirmed in rural areas, in addition to agriculture uses. Urban areas will likely experience the greatest changes, the number of cars owned for personal use will drop, eliminating congestion and the need for parking spaces, and car-sharing services will continue to grow.

Companies are investing enormous money in both electric and autonomous vehicles. For example, Microsoft is investing $2 billion in Cruise, that is majority owned by GM, for a valuation of over $30 billion (Colias, 2021). Apple and Hyundai-Kia are planning to start production of a fully autonomous electric car in 2024 (Lebeau, 2021). It is interesting to note that the smart phone market is about $500 billion annually of which Apple has roughly one-third of that market. By contrast, the mobility market is about $10 trillion annually so Apple would only need two percent of that market to match their iPhone business. It is little wonder the interest in the autonomous and electric vehicle space.

Although some estimates are that it will be at least 2040 before fully autonomous vehicles will be dominant, how should we cope with these forthcoming changes? How should we redesign and change the urban and rural infrastructure and landscapes, land use, and the economic and social systems?

There are test beds spreading around the nation in an effort to bring these and other technologies to market—Contra Costa County California formed a Transportation Authority (CCTA) and developed the leading facility in the nation—GoMentum (https://gomentumstation.net), the University of Michigan established Mcity some years ago (https://mcity.umich.edu), Waymo is planning a test facility in Ohio (Moderation Team, n.d.), and Missouri just formed a Missouri Center for Transportation Innovation (https://mcti.missouri.edu). These test beds, and other efforts, reflect the drive toward an autonomous and safe mobility ecosystem future. What do they have in common? They are built on partnerships and collaboration. Of course, the National Academies Transportation Research Board (https://www.nationalacademies.org/trb/transportation-research-board), U. S. Department of Transportation, state departments of transportation, universities, and the private sector represent the best minds around and continually add to our body of knowledge on all aspects of mobility and transportation.

Autonomous marine, freshwater, river, air, truck, and train vessels

This discussion does not even mention other modes and types of autonomous vehicles such as marine, riverine, freshwater, trucks, trains, planes, drones or unmanned aerial vehicles, aircraft, or space craft. Although they share many of the same challenges as cars and similar vehicles, many of these are likely years away before widespread use. Nonetheless, they are on the horizon. Of course, the elimination/reduction of operators will require careful planning to help people find other jobs in addition to negotiations with unions, changes in business models, and changes in society. The following links provide more information on these topics.

“What Will the Autonomous Ship of the Future Looks Like?” Smithsonian Magazine: https://www.smithsonianmag.com/innovation/what-will-autonomous-ship-future-look-180962236/

“The Marine Corps is eyeing a long-range robot boat that can nail targets with kamikaze drones” Task & Purpose: https://taskandpurpose.com/news/marine-corps-long-range-unmanned-surface-vessel-contract/

“A New Generation of Autonomous Vessels Is Looking to Catch Illegal Fishers” Smithsonian Magazine: https://www.smithsonianmag.com/innovation/new-generation-autonomous-vessels-looking-catch-illegal-fishers-180976336/

“Autonomous Shipping: Trends and Innovators in a Growing Industry” Nasdaq Technology: https://www.nasdaq.com/articles/autonomous-shipping%3A-trends-and-innovators-in-a-growing-industry-2020-02-18

“The Future of Autonomous Aircraft” TechXplore: https://techxplore.com/news/2020-12-future-autonomous-aircraft.html

“Xwing Unveils Autonomous Flight System for Regional Planes” VentureBeat: https://venturebeat.com/2020/08/20/xwing-unveils-autonomous-flight-system-for-regional-planes/

“Rail in on the way to autonomous trains” International Railway Journal: https://www.railjournal.com/opinion/rail-autonomous-trains

“Autonomous vessels on inland waterways” De Vlaamse Waterweg: https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupMeetingDoc&docid=38717

“Automated Trucking, A Technical Milestone That Could Disrupt Hundreds of Thousands of Jobs, Hits the Road” CBS News 60 Minutes: https://www.cbsnews.com/news/driverless-trucks-could-disrupt-the-trucking-industry-as-soon-as-2021-60-minutes-2020-08-23/

“Robots exploring on their own and self-piloting spacecraft are a long way off, says NASA computer scientist” Arizona State University News: https://news.asu.edu/20200220-discoveries-autonomous-spacecraft-baby-steps

Citations

Clements, L.M. and K.M. Kockelman. (2017, January 1). Economic effects of automated vehicles. Research Record: Journal of the Transportation Research Board. Retrieved February 6, 2021, from https://journals.sagepub.com/doi/abs/10.3141/2606-14

Colias, M. (2021, January 19). Microsoft bets bigger on driverless-car space with investment in GM’s Cruise. The Wall Street Journal. Retrieved February 6, 2021, from https://www.wsj.com/articles/microsoft-bets-bigger-on-driverless-car-space-with-investment-ingms-cruise-11611064940#

KPMG International. (2019). 2019 autonomous vehicles readiness index: assessing countries’ preparedness for autonomous vehicles. KPMG International. Retrieved February 6, 2021, from https://assets.kpmg/content/dam/kpmg/xx/pdf/2019/02/2019-autonomous-vehicles-readiness-index.pdf

Korosec, K. (2017, June 1). Intel predicts a $7 trillion self-driving future. The Verge. Retrieved February 6, 2021, from https://www.theverge.com/2017/6/1/15725516/intel-7-trillion-dollar-self-driving-autonomous-cars

Lanctot, R. (2017, June). Accelerating the future: the economic impact of the emerging passenger economy. Strategy Analytics. Retrieved February 6, 2021, from https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/05/passenger-economy.pdf

LeBeau, P. and Reeder, M. (2021, February 3). Apple and Hyundai-Kia pushing toward deal on Apple Car. CNBC. Retrieved February 6, 2021 from https://www.cnbc.com/2021/02/03/apple-and-hyundai-kia-driving-towards-deal-on-apple-car.html

McFarland, M. (2020, December 14). This robotaxi from Amazon’s Zoox has no reverse function. CNN Business. Retrieved February 6, 2021 from https://www.cnn.com/videos/business/2020/12/14/zoox-robotaxi-amazon-orig.cnn-business

Mehta, Ivan. (2019, April 15). How China’s new highway for self-driving cars will boost its AV ambitions. The Next Web. Retrieved February 6, 2021, from https://thenextweb.com/cars/2019/04/15/how-chinas-new-highway-for-self-driving-cars-will-boost-its-av-ambitions/

Moderation Team. (n.d.). Waymo to open new autonomous testing facility in Ohio. Self Driving Cars 360. Retrieved February 6, 2021, from https://www.selfdrivingcars360.com/waymo-to-open-new-autonomous-testing-facility-in-ohio/

Tomita, H. (2017, December 17). Awaiting the realization of fully automated vehicles: potential economic effects and the need for a new economic and social design. VOXEU CEPR. Retrieved February 6, 2021, from https://voxeu.org/article/potential-economic-and-social-effects-driverless-cars

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 3: Economics of Electric Vehicles and the Decline of Oil)

As with other subjects, the literature and development of electric vehicles (EVs) and oil is vast and evolving. What can be gleaned, generalized, and estimated is this (Reichert, 2017; Idaho National Laboratory, n.d.; Skeptics, n.d.; Evannex, 2018; Schmidt, 2017):

  • there are growing advantages to electric vehicles
  • a battery charge can go 400-600 miles
  • there are approximately 20 moving parts in a EV versus 2,000 moving parts in internal combustion vehicles
  • there is zero maintenance except for tires
  • EVs are 90 percent cheaper to operate
  • The estimated life of an EV may be 500,000-1,000,000 miles

Globally, peak car ownership is projected to occur by 2035. Cars are used only 4% of the time, and by 2023 it is estimated that EVs will reach parity with the cost of gas-fueled vehicles (Ingham, 2019; Weiland, et al, 2017; Gearino, 2020). As younger generations consider the cost of car ownership, a review of vehicle registration records in more than 200 metro areas revealed that per-capita car purchases increased 0.7 percent on average in the years after Uber, Lyft and other e-taxi giants deployed their fleets, compared to projected registration rates prior to the entry of the companies. These were very slow years for car dealerships, partly due to the pandemic in 2020 (Naughton and Welch, 2019; Wilson, 2021).

The first nine months of 2020 saw car sales crater (Figure 2). Every major automaker was impacted with the exception of Tesla. The electric automaker sold more cars than ever before. Even as the rest of the economy froze, Tesla posted its longest stretch of profitable quarters, increased stock value over 750 percent, is now the largest U. S. vehicle manufacturer, became the 6th largest U. S. company, and ended the year with inclusion in the S&P 500 stock index. A closer look reveals AVs in general managed to thrive even as sales of traditional cars declined. Both Volkswagen and Daimler saw record-setting losses in total sales while sales of their EVs doubled.

This image has an empty alt attribute; its file name is electric-vehicles-defy-slump.png
FIGURE 2. Electric vehicles defy the COVID slump. EV sales grew in 2020, while the rest of the industry crumbled. Sales volumes compare the first three quarters of 2020 with the same period in 2019. R-N-M refers to the Renault-Nissan-Mitsubishi Motors alliance. (Randall and Warren, 2020)

While the sale of electric vehicles has been increasing for some years, there is also a need for the infrastructure and charging stations to support it (Figure 3).

FIGURE 3. Electric cars and the needed infrastructure are still rare in the U. S., but are becoming more common each year (Source: U. S. DOE; Transportation Research Center at Argonne National Laboratory in Welch, 2021).

The Biden Administration wants to increase charging stations by half a million as part of their effort to cut carbon emissions to zero by 2050. As such, new gas-powered cars and trucks would have to be phased out rapidly, probably by 2035 or sooner. That means aggressive action would have to continue. (Welch, 2021).

The energy sector is undergoing a major transformation and it will intensify as more and more consumers, especially in the transportation industry, change their purchase decisions to cleaner and less expensive options in the marketplace (i.e. EVs over internal combustion vehicles) (Figure 4).

FIGURE 4. Clean energy market caps have surpassed those of oil companies. NextEra Resources is the world’s largest producer of wind and solar energy. Enel is an international manufacture and distributor of electricity and gas. Iberdola is the world’s largest producer of wind energy. Orsted is a Danish renewable energy company. Exxon is one of the world’s largest petroleum companies. Eni is a multinational fossil fuel company. Repsol is a multinational fossil fuel company. BP is a nultinational fossil fuel company. (Source Eckhouse, et al, 2020)

Batteries are a technology, not a fuel, which means the more that are produced, the cheaper they are to make. However, up until now, EVs have been more expensive to build than gasoline cars. That’s changing (Figure 5).

FIGURE 5. In 2020, some batteries were built for $100 per kWh, paving the way for EVs to become the cheapest option compared to oil. (Source Randall & Warren, 2020)

This past year saw the first companies producing batteries at a cost of $100 per kilowatt-hour. That’s the point that analysts believe will bring the cost of building electric cars in parity with similar gasoline vehicles. After that, EVs should only get less expensive.

Volkswagen, the biggest automaker by cars sold, confirmed that its batteries had reached the $100 threshold for its 2020 ID.3 sedan and upcoming ID.4 compact SUV (Matousek, 2019). China’s CATL, the world’s biggest battery supplier, also claimed $100 battery nirvana as it struck deals across the auto industry (Schmidt, 2020). In addition, Tesla plans to manufacture battery cells, a first for any automaker, and to reduce battery costs 56% by 2023 (Spector, 2020).

Most recently, President Biden has announced his intent to convert the federal vehicle fleet of 645,000 vehicles to electric (Dow, 2021). Still, we need to remain aware of the basic infrastructure required for migration to electric vehicles, charging stations scattered across the Nation, and power generation and network to provide adequate electricity.

General Motors has announced it intends to stop making gas- and diesel-powered vehicles and go all electric by 2035 and be carbon neutral by 2040 (Colias, 2021).

Amazon is also in the process of having 10,000 electric delivery vans on the road by 2022, and 100,000 by 2030 (Hawkins, 2020).

In spite of the Pandemic, 2020 experienced a 30 percent increase in electric vehicle sales and that is expected to increase to 72% in 2021, charging stations infrastructure has lagged (BlastPoint, 2021).

We are near a “tipping point”.

Another aspect to consider, the cost and weight of a power train goes up for large EV vehicles (trains, heavy trucks, and buses), essentially losing any EV advantage. That is a reason Cummins Diesel is looking to use hydrogen fuel cells for these types of large vehicles (Nagel, 2020; Ohnsman, 2020).

A dirty secret of EV— the extraction of minerals such as cobalt used to make batteries is frequently done by child labor (Broom, 2019).

Literature Cited

BlastPoint (2021). 2021 EV Outlook. BlastPoint. Retrieved January 31, 2021, from https://blastpoint.co/wp-content/uploads/2020/02/BlastPoint-2021-EV-Outlook_Report.pdf

Broom, D. (2019, March 27). The dirty secret of electric vehicles. World Economic Forum. Retrieved January 31, 2021, from https://www.weforum.org/agenda/2019/03/the-dirty-secret-of-electric-vehicles/

Colias, M. (2021, January 28). GM to phase out gas- and diesel-powered vehicles by 2035. The Wall Street Journal. Retrieved January 31, 2021, from https://www.wsj.com/articles/gm-sets-2035-target-to-phase-out-gas-and-diesel-powered-vehicles-globally-11611850343

Dow, J. (2021, January 25). President Biden will make entire 645k federal vehicle fleet electric. electrek. Retrieved January 31, 2021, from https://electrek.co/2021/01/25/president-biden-will-make-entire-645k-vehicle-federal-fleet-electric/

Eckhouse, B., R. Morison, W. Mathis, W. Wade, and H. Warren (2020, November 29). The new energy giants are renewable companies. Bloomberg Green. Retrieved January 30, 2021 from https://www.bloomberg.com/graphics/2020-renewable-energy-supermajors/

Evannex. (2018, September 22). Here’s seven reasons why electric vehicles will kill the gas car. InsideEVs. Retrieved January 31, 2021, from https://insideevs.com/news/340502/heres-seven-reasons-why-electric-vehicles-will-kill-the-gas-car/

Gearino, D. (2020, July 31). Electric cars will cost same as gas models as soon as 2023, researchers say. KQED. Retrieved January 30, 2021 from https://www.kqed.org/science/1967914/electric-cars-will-cost-same-as-gas-models-as-soon-as-2023-researchers-say

Hawkins, A.J. (2020, October 8). Amazon unveils its new electric delivery vans built by Rivian. The Verge. Retrieved January 31, 2021 from https://www.theverge.com/2020/10/8/21507495/amazon-electric-delivery-van-rivian-date-specs

Idaho National Laboratory. (n.d.). How do gasoline & electric vehicles compare? INL. Retrieved January 31, 2021, from https://avt.inl.gov/sites/default/files/pdf/fsev/compare.pdf

Ingham, L. (2019, January 4). Peak car approaches: car ownership will decline after 2034. Verdict. Retrieved January 30, 2021, from https://www.verdict.co.uk/peak-car-ownership-decline-2034/

Matousek, M. (2019, September 10). Volkswagen has reportedly reached a big milestone in battery costs that would heat up its competition with Tesla. Business Insider. Retrieved January 31, 2021, from https://www.businessinsider.com/vw-electric-cars-battery-costs-versus-tesla-2019-9#

Nagel, M. (2020, September 22). From advanced diesel to hydrogen: Four ways Cummins is committed to meeting energy demands. Cummins Newsroom. Retrieved January 31, 2021, from https://www.cummins.com/news/2020/09/22/advanced-diesel-hydrogen-four-ways-cummins-committed-meeting-energy-demands

Naughton, K. and D. Welch. (2019, February 28). This is what peak car looks like: For many people, new forms of mobility are making privately owned vehicles obsolete. Bloomberg Businessweek. Retrieved January 30, 2021, from https://www.bloomberg.com/news/features/2019-02-28/this-is-what-peak-car-looks-like

Ohnsman, A. (2020, November 16). Diesel engine giant Cummins plans hydrogen future — with trains coming before trucks. Forbes. Retrieved January 31, 2021, from https://www.forbes.com/sites/alanohnsman/2020/11/16/diesel-engine-giant-cummins-plans-hydrogen-futurewith-trains-coming-before-trucks/?sh=3bb5e8266ad2

Randall, T. and H. Warren (2020, December 1). Peak oil is suddenly upon US. Bloomberg Green. Retrieved January 30, 2021, from https://www.bloomberg.com/graphics/2020-peak-oil-era-is-suddenly-upon-us/

Reichert, E. (2017, May 11). Electric car components: gas vs. electric. NAPA. Retrieved January 31, 2021 from https://knowhow.napaonline.com/electric-car-components-gas-vs-electric/

Schmidt, B. (2020, May 22). CATL boss opens up about Tesla electric car battery deal. The Driven. Retrieved January 31, 2021, from https://thedriven.io/2020/05/22/catl-boss-opens-up-about-tesla-electric-car-battery-deal/

Schmidt, E. (2017, September 6). Top 12 reasons why electric cars are better than gas cars. Fleetcarma. Retrieved January 31, 2021, from https://www.fleetcarma.com/why-electric-cars-are-better-than-gas-top/

Skeptics. (n.d.). Do electric cars inherently consist of fewer parts than combustion engine cars? Stack Exchange. Retrieved January 31, 2021, from https://skeptics.stackexchange.com/questions/40383/do-electric-cars-inherently-consist-of-fewer-parts-than-combustion-engine-cars

Spector, J. (2020, September 22). Tesla battery day: expect battery cost to drop by half within 3 years. gtm. Retrieved January 31, 2021, from https://www.greentechmedia.com/articles/read/tesla-battery-day-cost-reduction-three-years

Weiland, J. and J. Walker (2017, December 6). Why peak car ownership in 2020 Isn’t So Farfetched. HuffPost. Retrieved January 30, 2021, from https://www.huffpost.com/entry/why-peak-car-ownership-in_b_12200628

Welch, C. (2021, January 22). Has the electric car’s moment arrived at last? National Geographic. Retrieved January 30, 2021, from https://www.nationalgeographic.com/environment/2021/01/has-electric-car-moment-arrived-at-last/

Wilson, K. (2021, January 8). Study: e-taxis increase private car ownership in many cities. StreetsBlog USA. Retrieved January 30, 2021, from https://usa.streetsblog.org/2021/01/08/study-e-taxis-increase-private-car-ownership-in-many-cities/

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 2: Safety, Smart Cities)

Safety

There is likely not a transportation agency or company that does not consider safety as their number one priority. This is how it should be. The very first roadway powered vehicle fatality in the United States was on September 13, 1899, when Henry Hale Bliss, a 69-year-old local real estate dealer, was dismounting a southbound 8th Avenue trolley car in New York City when an electric-powered taxi cab struck him. Bliss hit the pavement, crushing his head and chest. Bliss died from his sustained injuries the next morning (Eschner, 2017). A plaque was dedicated at the site on September 13, 1999, to commemorate the centenary of this event. It reads:

Here at West 74th Street and Central Park West, Henry H. Bliss dismounted from a streetcar and was struck and knocked unconscious by an automobile on the evening of September 13, 1899. When Mr. Bliss, a New York real estate man, died the next morning from his injuries, he became the first recorded motor vehicle fatality in the Western Hemisphere. This sign was erected to remember Mr. Bliss on the centennial of his untimely death and to promote safety on our streets and highways.

Since then, it has been a continual challenge to reduce fatalities, injuries, and property damage. Entire industries have grown up during this time (insurance, roadway policing, etc.).

More recently, while technology and autonomous vehicles hold promise to reduce and perhaps eliminate crashes, it will be many years and probably decades before a significant impact occurs. The United States alone averages 30-40,000 roadway deaths a year. Globally there are 1.35 million people annually killed on roadways around the world (3,700/day) with a $1.8 trillion economic cost in 2010 U. S. dollars (Road Traffic Injuries and Deaths—A Global Problem, n.d.). In the meantime, efforts must continue to protect people. Within the past decade, many in the industry have set goals for zero fatalities. As an example, one of these is Houston’s Vision Zero Action Plan (Begley, 2020). The city’s plan identifies 13 “priority actions” the city is committing to take. Among them:

  • construct at least 50 miles of sidewalks annually
  • build at least 25 miles of dedicated bike lanes annually
  • evaluate road projects for options to include sidewalks, bike trails and other amenities
  • redesign 10 locations with high numbers of incidents every two years, and make those changes within the following calendar year

Additionally, the plan calls on the city to train its employees on how to talk about crashes to avoid victim-blaming or playing down safety issues. It also calls for a detailed analysis of Vision Zero’s progress to be made publicly available.

These are not particularly unique actions to improve safety, as professionals work every day—through planning, design, construction, operations, maintenance, education, and collaboration—to reduce, if not eliminate, crashes and the circumstances that lead to them in an effort to keep people safe. However, “action” is the operative word just as Houston is doing.

Smart Cities and Concepts

Advances in policy, planning, partnerships, and innovation are being developed at all governmental levels in an effort to provide a framework for the public and private sectors to work in unison within an architecture to increase effective and efficient mobility. An early example of this is the Intelligent Transportation System or ITS Architecture developed by the U. S. Department of Transportation in conjunction with many partners and issued in 2001.

There are a number of concepts that can and have been referred to as “Smart Cities” or “Smart City Concepts”. These have evolved especially during the technology revolution of the past two decades. This list is far from exhausting the myriad concepts or disciplines. The following discusses some of these disciplines and concepts, in no particular order, and none fit neatly within one topic.

Some disciplines in these concepts:

  • Strategic Planning. This is the starting point for virtually everything else. It is, of course, preceded by the necessary outreach, listening, team building, and collaboration needed to build a strategy.
  • Performance Metrics. Tracking progress toward meeting the goals imbedded within the strategic plan is equally important. Any plan becomes useless without progress toward obtaining it and performance metrics provide that tool to measure progress.
  • Connected and Automated Vehicles (CAV). Driven by rapidly developing technologies, CAV primarily provides more capacity from infrastructure, essentially reducing costs and improving safety.
  • Clean Energy—Maturing Alternative Fuel Technologies. The Industrial Age and resulting pollution and climate change that resulted have demanded clean energy in all its forms—solar, wind, hydrogen fuel cell, and electricity. Electricity is currently most dominant.
  • Electrification. As electricity emerges as the clean energy fuel, vehicle manufactures and governments are rapidly moving forward to increase electric vehicle use and reduce carbon-based vehicle use. The Governor of California has mandated no new internal combustion vehicle sales within California after 2035 while electric vehicle use continues to rise, and many states and communities are encouraging their use with supporting infrastructure. California has led many areas in the mobility space so this is one to watch.
  • Hydrogen Fuel Cells. Recently, the diesel engine manufacturer Cummins is developing hydrogen fuel cell engines that they believe will be efficient and compete favorably with electricity for heavy vehicles such as buses, heavy trucks, and trains.
  • Mobility as a Service/Mobility on Demand. Mobility as a Service, or MaaS, also known as Transportation as a Service, provides services typically with a joint digital channel that enables users to plan, book, and pay for trips. This is part of a more global shift from personally-owned vehicles to mobility provided as a service. Micro-mobility and micro-transit are also emerging (Regional transportation study suggests ‘’micro-transit’, 2020).
  • Car and Ride Sharing. Car and ride sharing has been around for decades, but the technology of recent years has allowed it to become much more effective and efficient as evidenced by the rise of Lyft and Uber.
  • Increasing Biking, Scooters, and Pedestrian Mobility. In recent years as a means to reduce car usage especially in metropolitan areas, bike lanes, trails, sidewalks, and scooter/bicycle rentals are increasing. These have the ability to also improve health while reducing congestion and increasing the capacity of infrastructure.
  • Big Data. This is the best of continuous improvement. Virtually every organization has legacy systems of data, physical (e.g. file cabinets) or electronic (e.g. servers or the cloud). For a variety of reasons, these data have resided in ”silos” and are not easily accessed and analyzed from broader, more complex perspectives. New technologies and related tools are now allowing “big data” to be accessed and analyzed with resulting increases in efficiency and performance.
  • Risk. Risk has always existed and is dominant in mega and giga projects as evidenced in projects such as the California High Speed Rail. While private companies have had risk management programs for years, the most recent federal transportation act (Fixing America’s Surface Transportation or “FAST Act,” 2015) requires states to have a risk management program. Using different tools to anticipate potential challenges (e.g. lost revenues) as well as opportunities (e.g. lost opportunities to increase revenues), these tools allow proactive development of strategies to mitigate and address the challenges as they occur vice the turmoil and problems associated with surprises. Of course this does not eliminate surprises termed “black swans” but these tools do significantly reduce most risks.
  • Resilience. Infrastructure is the backbone of our economy, connecting people, enhancing quality of life, and promoting health and safety. But climate change is revealing infrastructure vulnerabilities (Will infrastructure bend or break under climate change?, 2020). Like risks, resiliency or the lack of it, has always existed. As our built environment has increased, come into conflict with, and impacted the natural environment, the demand for protecting the built environment has increased. The National Oceanographic and Atmospheric Administration (NOAA) (Lindsey, 2020) estimates a sea level rise of one foot to 8.2 feet by 2100. The variables are such that it is impossible to project more precisely. These apparently man-induced climate changes have increased hurricanes, other storms, coastal erosion, flooding, and other events that erode or destroy man-made structures including roads and bridges. This has demanded more resilient infrastructure through better materials, protective structures, relocation to less exposed areas, improved construction practices, and others (Parsons, 2020). One of the more recent efforts to improve the built-natural environment coexistence is the U. S. Army Corps of Engineers initiative “Engineering with Nature” (https://ewn.el.erdc.dren.mil/).
  • Environment. This discipline, like other disciplines, interacts together. As living beings, we depend on and are part of the natural environment. Thus, while risk and resilience are critical to the built environment, the healthy functioning of the natural environment is essential to our well-being. There is general recognition that climate change, biological diversity, populations, species loss and other insidious environmental impacts are undermining the natural world on which life (including humans) depends. (Will infrastructure bend or break under climate change?, 2020; UN Report: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’, 2019; Bongaarts, 2019; Duckett, 2020; Sofia, et al, 2020; Kann, 2020). There are emerging lab cultured meats that may reduce greenhouse gases 20-30 percent, slaughtering of 80 billion animals a year, improve land use, and reduce creation and transmission of diseases such as coronavirus. In the end we must take care of our natural environment. There is an increasing demand for the transportation/mobility space to not only mitigate but improve the natural environment. While many techniques are not new, the U. S. Army Corps of Engineers initiative “Engineering with Nature” increases the attention to the importance and techniques to live well within and take care of the natural environment.
  • Internet of Things (IoT). This is technology taken to a high level. There is increasing demand for seamless mobility and IoT provides tools to achieve that future. As the title of this blog infers (The Mobility Ecosystem), the IoT allows an increasing emphasis on a “systems perspective” of our lives. Technology is allowing us to not only see the mobility ecosystem more clearly but how to improve its performance in all of its myriad impacts and relations…economic, social, environmental etc. (Joshi, 2020).

Some Smart City Concepts

  • Incentivize High Density Development. Our society has seen in an ebb and flow in regards to this concept—rural agriculture migrating to cities during industrialization, migrations to suburbs during metropolitan growth, migrations to more rural areas with increased opportunities for remote work, and a return to metropolitan areas primarily for work. This latter has dramatically increased traffic congestion and no one likes that. So, metropolitan areas are employing solutions to address this issue, such as providing incentives for high density development, not only of businesses, but housing and support services such as health care and  grocery stores that are within walking distance. Due to population densities in European and Asian metropolitan areas, high density development has been occurring for some time. The United States is a much younger country so, we can learn from looking at their experience.
  • Incentivize Core Downtown Development by Charging Fees for Increases in Traffic. This is more of a technique than a concept. Nonetheless, charging fees for development that results in traffic increases can be a powerful tool while developing downtown areas, reducing traffic congestion, and increasing pedestrian/bicycle/scooter traffic.
  • Electrify Transportation: While electrification is a discipline, its application to traffic is considerable and is rapidly occurring. The economics driving this are discussed in a later post in this series.
  • Use More Shared and Connected Transportation. While shared transportation providers such as Uber and Lyft are becoming increasingly ubiquitous and used by many, especially millennials, there is little question that these and other providers will continue to expand. Connected transportation is beginning to emerge essentially in two forms. One is connecting various modes into one seamless multimodal transportation system, largely through technology. The other is by linking buses, trucks and cars into essentially “trains of vehicles or platoons” with little or no separation (i.e. virtually or physically connected). This has the net effect of increasing the capacity of infrastructure and increasing the productivity (and safety) of vehicles.
  • Use Traffic Calming Devices that Slow Cars and Enhance Pedestrian, Bicycle, Scooter, and Transit Mobility. This is likely one of the less obvious smart city concepts. However, the use of traditional traffic lights, traffic circles, pavement markings, and signs can have the net impact of slowing cars and enhancing pedestrian, bicycle, scooter and transit mobility.
  • Adopt User-Friendly App(s) for Routing and Paying for Multimodal Trips. This may be more of a technique for increasing connected vehicle use by a user-friendly app that allows for routing and paying for multimodal trips. These are being developed in locations such as the Denver RTD.
  • Free Public Transportation. As population densities increase and the impacts are valued and assessed via more “systems thinking,” the results may be that free public transportation may be more advantageous and cost-effective than alternatives. Dunkirk France concluded that free public transportation was more advantageous and cost effective than other alternatives, and thus provide free public transportation. Kansas City, Missouri, is providing free public transportation in a one year test to determine whether to do the same.
  • Stay Healthy Streets. Making more use of streets has gone by various names including complete streets, but Stay Healthy Streets is a more recent terminology. Essentially, this concept increases the usage of roads from motorized vehicles to pedestrians, bicycles, and other micro-mobility. This can be accomplished by closing or limiting streets to vehicle access, pavement markings for bicycle lanes, etc. The cities of Seattle and Minneapolis saw increases in pedestrian and bicycle traffic during the COVID-19 Pandemic while other cities saw little or no change. The question now is whether to keep these Stay Healthy Streets or not.

The fDis Global cities of the future (fDiintelligence.com, a service of the Financial Times LTD) also offers a variety of great insights, including by competitions to identify the best practices for future global cities.

Smart Rural Concepts

In an effort to be holistic, it is appropriate to provide some discussion of Smart Rural Concepts. The needs in largely agriculture-based communities for access to hospitals, schools, jobs and other communities is equal to that of more urban communities although the challenges may vary, including longer travel distances. Nearly every element in the above discussion of Smart Cities also relate to rural areas, the need for strategic planning, clean energy, electrification, big data, resilience, 5G, ITS, variable message signs, CAV, GPS, IoT, user-friendly apps for routing, etc. One exception is that most rural communities are not burdened with traffic congestion in their downtowns so incentivizing high-density development downtown makes little sense. However, many rural communities strongly desire more downtown traffic as a perceived means of economic development. Traffic can be a two-edged sword depending on your perspective. Truck traffic routing is another area rural communities may struggle with more than more urban communities.

One of the more challenging aspects of rural areas is that 45 percent of the nation’s fatalities are on rural roads while only 19 percent of the nation’s population lives in rural areas (Rural/Urban Comparison of Traffic Fatalities, 2020). This warrants counter measures not usually used in more urban areas. With more than 30 people a day dying in roadway departure crashes on rural roads, inexpensive countermeasures like SafetyEdge, rumble strips, lane markings, signage, and edge lines can and are bringing that number down.

Literature Cited

Begley, Dug (2020, December 16). Houston has a plan to end road fatalities. Now the work to implement it begins. Houston Chronicle. Retrieved January 14, 2021, from https://www.houstonchronicle.com/news/houston-texas/transportation/article/Houston-has-a-plan-to-end-road-fatalities-Now-15809563.php

Bongaarts, J. (2019, September 4). IPBES, 2019. Summary for policy makers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Wiley Online Library. Retrieved January 14, 2021 from https://onlinelibrary.wiley.com/doi/full/10.1111/padr.12283

Duckett, M.K. (2020, March 4). Nature needs us to act – now. National Geographic. Retrieved January 14 from https://www.nationalgeographic.com/science/2020/03/partner-content-nature-needs-us-to-act-now/

Eschner, K. (2017, September 13). Henry Bliss, America’s First Pedestrian Fatality, Was Hit By an Electric Taxi. Smithsonian Magazine. Retrieved January 18, 2021, from https://www.smithsonianmag.com/smart-news/henry-bliss-americas-first-pedestrian-fatality-was-hit-electric-taxi-180964852/

Fixing America’s Surface Transportation or “FAST Act.” (2015, December 4). U.S. Department of Transportation. Retrieved January 14, 2021 from https://www.transportation.gov/fastact

Joshi, N. (2020, December 16). How IoT Can Enhance Public Transportation. BBN Times. Retrieved January 14, 2021 from https://www.bbntimes.com/technology/how-iot-can-enhance-public-transportation

Kann, D. (2020, December 3). Salmon have been dying mysteriously on the West Coast for years. Scientists think a chemical in tires may be responsible. CNN. Retrieved January 14, 2021 from https://www.cnn.com/2020/12/03/us/microplastics-tire-rubber-chemicals-killing-coho-salmon-scn/index.html

Lindsey, R. (2020, August 14). Climate Change: Global Sea Level. NOAA. Retrieved January 14, 2021 from https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level

Parsons, J. (2020, December 16). Shoring Up for Rising Sea Levels. Engineering News-Record. Retrieved January 18, 2021 from https://www.enr.com/articles/50899-shoring-up-for-rising-sea-levels

Regional transportation study suggests ‘micro-transit’. (2020, December 11). Mid Hudson News. Retrieved January 14, 2021 from https://midhudsonnews.com/2020/12/11/regional-transportation-study-suggests-micro-transit/

Road Traffic Injuries and Deaths—A Global Problem. (n.d.) Center for Disease Control and Prevention. Retrieved January 14, 2021 from https://www.cdc.gov/injury/features/global-road-safety/index.html

Rural/Urban Comparison of Traffic Fatalities. (2020, May). NHTSA Traffic Safety Facts 2018 Data. Retrieved January 14, 2021 from https://ruralsafetycenter.org/wp-content/uploads/2020/06/812957.pdf

Sofia, G., E.I. Nikolopoulos, L. Slater. (2020, March 16). It’s Time to Revise Estimates of River Flood Hazards. Eos. Retrieved January 14, 2021 from https://eos.org/opinions/its-time-to-revise-estimates-of-river-flood-hazards

UN Report: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rate ‘Accelerating.’ (2019, May 6). United Nations. Retrieved January 14, 2021 from https://www.un.org/sustainabledevelopment/blog/2019/05/nature-decline-unprecedented-report/

Will infrastructure bend or break under climate stress? (2020, June). McKinsey Global Institute. Retrieved January 18, 2021 from https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability/Our%20Insights/Will%20infrastructure%20bend%20or%20break%20under%20climate%20stress/Will-infrastructure-bend-or-break-under-climate-stress_case-study.pdf

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 1: Introduction, Setting the Stage, The Future of Transportation)

“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.” 

― Albert Einstein

Introduction

This is the first in a series of blog posts on The Mobility Ecosystem: the changing landscape and need for fresh new ideas.

There is no one in our society who does not depend on and is impacted by mobility in its various forms. Moreover, mobility, its near-synonym transportation, and their associated agencies are increasingly responsible for helping to resolve an expanding number of issues—economic, societal, environmental, etc. While some are at the margin, others are at the core.

This narrative interweaves the perspectives and insights of multiple disciplines—engineering, economics, technology, natural, environmental and climate sciences, analytics, equity, anthropology, sociology, psychology, political science, business, philosophy, and history—and borrows from entire bodies of scholarship and discussions that I have sought to learn from, synthesize and build upon.

The primary reason for the title “The Mobility Ecosystem” is biomimicry, which is defined as the design and production of materials, structures, and systems that are modeled on biological entities and processes. The imitation of natural biological designs or processes in engineering or invention is not new. It has existed for thousands of years and has inspired airplanes from birds flying and roads from animal trails. Recently, Netherlands-based architecture firm GG-Loop along with engineering company Arup is developing ‘Mitosis’, a modular building system created by a parametric design tool following biophilic and user-centric design principles inspired by nature (Netherlands-based firm brings biophilic regenerative architecture to urban developments, 2020). The human society development has been largely inspired or driven by the natural world. We are continuing to learn from nature in creating and saving our world from human impacts.

A more thorough review of the increasingly rich, diverse mobility literature with citations, bibliography, notes, or epigraphs is beyond the scope of this blog and is intended for a longer future article.

Mobility is emerging as a human right, literally and figuratively, and an inherent part of freedom. Governments, city builders, and communities are faced with seemingly limitless possibilities which can be both liberating and paralyzing at times—a virtual smorgasbord.

Setting the Stage

There is general recognition that mobility, broadband, and cloud services are the 21st Century infrastructure. Infrastructure development (physical and digital) is a catalyst for economic development and jobs. There is a universal dislike of traffic congestion, fuels and technologies are changing, and personal vehicle ownership has begun to decline. These trends and others are part of what is emerging as transportation or mobility as a service, are changing our world, and collectively incorporate many of the aspects of this blog series.

It is impossible to identify a point in time when technology began to emerge. It pretty well parallels the evolution of humankind. While the real shift to digital technology began with the launch of the first personal computers in the 1970s, the fielding of the first Apple iPhone in 2007 was a dramatic advance in technology. With that event, the rate of change and demand for collaboration and technology increasingly accelerated, act synergistically, and offer the potential to improve safety, the economy, the environment, society, and people’s lives.

The Future of Transportation

The future of transportation may be reflected in the incoming Biden-Harris Administration priorities of defeating the COVID-19 Pandemic, economic recovery, racial equality, and climate change. Within those priorities are some likely Biden-Harris Administration transportation priorities as reflected by John Porcari, former Deputy Secretary of Transportation and member of the Biden-Harris Administration Transition Team.

  1. Safety
  2. Technology
  3. Climate Change
  4. Resilience
  5. Transit and passenger rail

Trends and issues on the horizon involve revisionist urban systems and identifying tangible, integrated solutions that exceed the status quo’s diminishing returns. The ability to envision and improve communities, public spaces, networks, and services is critical to influencing the path ahead.

FIGURE 1. A safe, seamless multimodal transportation or mobility system.

What’s needed? A truly safe, seamless, multimodal 21st century transportation system for the movement of people and goods (Figure 1).  The future is exciting, limitless, and rapidly changing. These are tenants for the mobility ecosystem.

  1. Safety: reduce crashes, fatalities, injuries, and property damage
  2. Mobility: reduce congestion, increase the capacity of existing infrastructure; connected and intermodal=one seamless transportation system
  3. Economy: improve access to jobs, products and services, origin, destination, transport
  4. Society: mobility is emerging as a human right; equity, social justice, equality, mobility for the under served
  5. Environment: environmental justice for all is emerging as a human right; improve air, land, and water
  6. Costs: reduce overall costs
  7. Time: reduce travel time
  8. Support: leverage advancing technologies, business intelligence/analysis, data, and decision-making systems

The above eight tenants and the contents of this blog do not supplant the process of good, sound planning, project development, design, construction, operations, and maintenance. At least until there is a better way, these tenants also do not supplant many other important elements such as a strong safety culture and program, annual needs assessment of infrastructure condition and their associated scope and cost, preserving the existing system, utilization of asset management tools, and monitoring and managing traffic speed and volume. It is the utility of all tools that will optimize outcomes in creating a better world for us and our posterity.

Literature Cited

Netherlands-based firm brings biophilic regenerative architecture to urban developments. (2020, November 16). Construction Canada. https://www.constructioncanada.net/netherlands-based-firm-brings-biophilic-regenerative-architecture-to-urban-developments/

One Seamless Transportation System 3.0: 7 Tenants for the Future

The future of transportation/mobility is about leadership. Seven tenants to improve this include:

  1. Safety: reduce crashes, fatalities, injuries, and property damage

At its base, every department of transportation, their partners, and stakeholders hold their first priority as safety. This is the value we put on life. As the future of transportation and mobility evolve, driven by demand for technology and collaboration, a safe system can be achieved with zero crashes, fatalities, injuries, and property damage. However, human nature cannot be controlled and periodic mishaps are bound to occur. Nonetheless, the future is bright for a safer transportation/mobility system.

  1. Mobility: reduce congestion, increase the capacity of existing infrastructure; connected and intermodal=one seamless transportation system

Every transportation department, their partners, and stakeholders were formed to improve mobility, whether that was getting out of the mud or the interstate highway system. Earlier, these departments were focused on engineering and construction using concrete, asphalt, and steel to predominately build a network of roads and bridges. The complexity for these departments has long since become increasingly multi-faceted, demanding additional disciplines, skill sets, and more understanding. The future of transportation and mobility, again driven by increasing demand for digital technology and collaboration, portends the opportunity for one connected, intermodal, seamless transportation system. The parts to this system are fast emerging in autonomous vehicles, one shop stop apps for routing, transfers and payments, and increasing demands from the public to make it so. This latter is driven largely by demand for access, social justice, greater diversity and other social values for fairness.

  1. Economy: improve access to jobs, products and services, origin, destination, and transport

There is a strong argument that transportation and mobility have been a primary driver of economic growth. This is an especially strong argument in valuing the interstate highway system. Other countries recognize that, too. That is why China is building the “One Belt, One Road” which will result in the largest road network in the world and India’s National Highways Development Project which will result in a road network of over 30,000 miles as an element of their industrial revolution. Our entire society depends on transportation and mobility for access to jobs, public safety, health care, food, recreation, and many others. This access can be as large as the interstate highway system or as small as handicap ramps at intersections and curbs. Transportation and mobility are important at every level of our society although many take it for granted. Increasingly and rightly so, departments of transportation are using various and emerging systems to more directly value the impact of transportation and mobility in the economy. In fact, many have this reflected in their mission statements.

As the future emerges and more efficient, environmentally friending fuels come into the market, the future transportation and mobility system may include a newer user-based system such as a vehicle miles traveled tax or VMT, emerging from the fuel tax invented by the State of Oregon in 1919. This has been demonstrated as feasible for over 10 years by Oregon and other states. As such, the transportation and mobility system may operate more like a utility than it does now.

As the demand for digital technology and collaboration has increased, it requires a workforce that knows and understands how to use them. The rate of change is so rapid that the entire transportation and mobility industry, educators, and job seekers are challenged to keep up.

  1. Environment: improve air, land, and water

As the social consciousness of environmental pollution, impacts, and climate change has increased, the efforts to control, mitigate and cleanup those impacts have correspondingly risen. While the environment and the impacts put upon it are often complex, the ownership is often ambiguous. Although many businesses are leaders in improving the environment, governments at all levels are frequently the leaders in regulating, mitigating and cleaning up impacts. As such, it is increasingly common for departments of transportation to be looked to lead in the environmental arena and mitigate the impacts on air, land, or water. My own sense is that these departments are generally very sophisticated and are up to the task.

  1. Costs: reduce overall costs

Most people, governments, and businesses look closely at the costs in dollars since that is a primary measurement of value in our society. We view our savings, reduced costs, or costs avoided to a lesser degree. These can be significant, especially when viewed broadly such as the time-value to the driver either sitting in traffic, not being able to get to work or appointments on time, emergency responders including ambulances being slowed or stuck in traffic, and the increased opportunity for secondary collisions. Still, other impacts on the environment may be affected and add to global warming. What are the impacts on plants and animals which share our planet and sometimes may represent the “canary in the coal mine”. While direct costs in dollars serve an important purpose, viewing the wider range of costs, including those that are difficult or may not lend themselves to being valued in dollars, can be a challenge. In fact, progress in some areas such as environmental impacts and climate change may not be adequately valued in dollars, in spite of the fact that there are real financial impacts. Taking the “big picture” of the real or estimated costs in dollars or other value systems is difficult. Still, this must be done to more fairly assess the impacts to and within the built and natural environments. Otherwise, decision-making, which always has inherent flaws or risks, will not result in optimal judgments. Our ability to make more informed decisions on the total costs is evolving and improving in many parts of our society, including in transportation and mobility. Some of the systems enabling decision-making are well founded and continue to be well used, such as engineering economics. Others such as balancing the built and natural environments are more challenging but are improving within the emerging discipline of sustainability.

  1. Time: reduce travel time

There is only so much time. Most of us are very protective of it. If we cherish our time, then it makes sense to place a value on it. Increasingly this is done. For example, placing a dollar value on a driver’s time and doing a calculation for a construction contractor’s incentive if work is completed early, or conversely charging a disincentive if work is completed late. Driven by increasing demand for digital technology and collaboration, the transportation/mobility system future promises a transition from a fragmented multimodal system to one connected, seamless, intermodal system that will optimize travel time for each of us.

  1. Support: leverage emerging, business intelligence/analysis, data, and decision-making systems

The six previous tenants are ideas that cannot be achieved without an underlying support system. While these are based on education and research and development, emerging technologies are building tools for creating better built and natural environments. The rapidly evolving arena of the Internet of Things (IoT), big data, business intelligence, and analytics, augmented and virtual reality and others are great, especially when considering the Apple iPhone was only released in 2007. Digital technology is a significant driver in this brave new world of transportation and mobility. Another significant driver is our human ability to collaborate for the greater societal good. Using these emerging tools to create a better transportation and mobility system will be a significant step.

The above seven tenants do not supplant the process of planning, design, construction, operations, and maintenance. At least until there is a better way, these do not supplant many other important elements such as a strong safety culture and program, annual needs assessments and their costs or savings, preserving the existing system, utilization of asset management tools, assessing and documenting infrastructure condition, and monitoring and managing traffic speed and volume.

It is the utility of all tools that will optimize outcomes in creating a better world for us and our posterity.

“The secret of change is to focus all of your energy, not on fighting the old, but on building the new.”

– Socrates

Transportation and Mobility: Past, Present, Future

Setting the stage: a brief history

Transportation and transportation infrastructure (heretofore referred to simply as mobility) have been around since the beginning of humans. In fact, the history of people and civilization could be told in terms of mobility. Mobility allowed our species to move out of Africa and around the world in roughly 50,000 years (starting around 60,000-80,000 years ago and completing this global journey around 15,000 years ago). Early components included walking on animal trails and along waterways (rivers, lakes, and ocean), increasingly large and sophisticated floating craft (boats, canoes, ships, and others), and animals domesticated to increase transport (horses, alpacas, camels, and others) over larger and larger expanses. The invention of the wheel (and associated axle) appears to date back to about 5,000 years ago and was a milestone that has resulted in vehicles of increasing size and capability ever since. For at least the last few thousand years virtually all of the mobility system developed based on available data, mathematics, and trial and error. Over time, these components have evolved into an increasingly sophisticated mobility system. The Apian Way allowed the Roman Empire to travel and dominate much of the known world. The Silk Road and others increasingly expanded trade and cultural exchange over vast areas of the globe.

Our forefathers had a great interest in roads, particularly in a “National Road” to connect the emerging United States of America. What eventually became the National Road (also known as the Cumberland Road, Cumberland Pike, National Pike, and Western Pike) was created by an Act of Congress in 1806 and signed into law by President Thomas Jefferson. In many ways, it was an early precursor to the Interstate Highway System. The Act was revolutionary and called for a road connecting the waters of the Atlantic with those of the Ohio River. Federal funding began in Cumberland, Maryland. The predecessors of the National Road included buffalo trails, Native American footpaths, Washington’s Road, and Braddock’s Road. The latter two were developed over part of the Nemacolin Trail, an Indian pathway, as part of the British campaign to evict the French from the forks of the Ohio River. Congress paid for the National Road, in part, by establishing a “2 percent fund” derived from the sale of public lands for the construction of roads through and to Ohio. Construction took longer than expected and the costs of maintenance were underestimated. As a result, tolls were eventually collected to pay for maintenance. To this day underestimating the cost of maintenance is likely true in many states and communities.

In 1919, Oregon was the first to develop a reliable funding mechanism—the fuel tax—which has been the primary funding mechanism for roads and bridges. By 1929, all states had a fuel tax. It was not until 1956, that the federal government created a federal fuel tax—Federal Highway Trust Fund— to pay for construction (not maintenance) of the Dwight D. Eisenhower National System of Interstate and Defense Highways, commonly known as the Interstate Highway System. As of December 2007 (“Peters Quick Action” in Better Roads), the U. S. Secretary of Transportation reported that 40 percent of the Federal Highway Trust Fund is used for other purposes. While much of the first half of the 20th Century was spent “getting out of the mud”, the 50 years subsequent to 1956 were spent building and maintaining the interstate highway system under the responsibility of state departments of transportation. In large part, the 21st Century appears to be ushering in an era of system preservation, due largely to inadequate funding.

As indicated earlier, data for improving mobility is not new and it is reflected in virtually every aspect of the mobility ecosystem. These include engine oil diagnostics which serve to extend engine life, data-based preventative maintenance checks and services and scheduled services for all types of vehicles, data-based structural and functional capacities of roads and bridges, data-based pavement management systems, data-based bridge management systems, data-based needs assessments and estimated costs for repair and replacement of infrastructure (roads, bridges, buildings, runways, etc), data-based asset management for determining priorities of spending within and between modes, analytic tools such as life-cycle costs, return on investments, and many others. In fact, it would be difficult to identify an element of the mobility ecosystem that is not or cannot be managed by data. Of course, this requires good data and that does not always exist. There are many examples of entities that attempt management without good data that is fairly analyzed and with actionable outputs.

In 2007, the first iPhone was fielded, and this serves to mark the beginning of a new era, one driven largely by rapidly evolving digital technology but other elements as well. These elements include other technologies and increasing demand for collaboration. While 2007 was not the beginning it is convenient to view it as an inflection point, especially for mobility. The United States is, and has been, a leader in mobility and that has been a significant multiplier in building our nation’s strong economy.

While much of the rest of the world has lagged behind the United States in the mobility space, it is rapidly catching up. Two examples are China’s “One Belt, One Road” which will result in the largest road network in the world and India’s National Highways Development Project which will result in a road network of over 30,000 miles as an element of their industrial revolution.

Introduction

Transportation is the aging term. Mobility reflects the emerging mobility ecosystem and marketplace. This ecosystem is at an inflection point coupled with the Internet of Things (IoT) and new ways of thinking in the 21st Century. It is an exciting time, with more changes in the next 10 years than perhaps the previous 100, driven by increasing demand for technology and collaboration. It is not an overstatement that today’s new gadgets are tomorrow’s antiques.

While some things will remain the same, this new mobility ecosystem will move inextricably forward as it evolves. We’ll increasingly think and speak in terms of one seamless, connected, efficient, user-friendly, intuitive, multimodal mobility system. Over time we will speak less in terms of buying and owning vehicles, “hard” infrastructure without embedded technology and planning individual modes to get where we want to go. Moreover, this new emerging mobility ecosystem will better connect one global community and economy, with all of its challenges, risks, and opportunities.

In short, mobility is being reimagined.

Current Situation

The mobility ecosystem is complex if it is anything. Modes vary across the world. These modes and some components include planes, trains, automobiles, trucks, transit providers of all types, buses, bicycles, motorcycles, pedestrians, airports, marine/lake/river ships, roads, rail, bridges, marine and freshwater ports, dredging to enable navigable ports and rivers, pipelines, public safety providers, governance in both the public and private sectors, and many others. These provide us access to jobs, medical care, food, fuel, emergency response, vacations, and many others. The size and capacity of many vehicles are growing increasingly from large to gigantic in an effort to gain economies of scale in moving people and goods as much of the supporting infrastructure races to keep up.

Using the United States as a yardstick, the first half of the 20th Century was marked by increasing motorized road, rail, air, and river and blue water conveyance. The second half of the 20th Century was marked by improvements in all areas of conveyance but largely by the creation of the Interstate Highway System. Simplistically, these can be referred to as the motorized conveyance era and Interstate era, respectively. I think it is important to note that the Interstate era also increased the emphasis on safety in an effort to decrease losses in lives and property. This is critical and continues to this day, as it should.

According to historian Jonathan Kenoyer, the concept of using a valueless “technology” instrument to represent transactions dates back 5,000 years, when the Mesopotamians used clay tablets to conduct trade with the Harappan civilization. While cumbersome, a slab of clay with seals from both civilizations certainly beat the tons of copper each of which had to be melted down to produce coins. Fast forward to the mid 20th Century, the Diners Club Card was the first credit card in widespread use by 1951. American Express introduced the first plastic card in 1959. Within five years, one million American Express cards were in use. In the 1950s-1960s my father, who worked for DX Oil Company, talked about them working on a card that could be used to pay for gas and enable self-service dispensing of fuel. The card became one of the ubiquitous credit cards. While credit cards have been upgraded over time to include passwords, security codes, and chips, today’s technology changes at increasingly rapid rates (the iPhone with its camera, GPS, apps and other associated technologies is just one example).

With the rapid advances in technology in the early 21st Century, the opportunities for mobility to be reimagined has never been greater and this has only just begun.

New technologies do not have to function on their own and frequently do not. For example, Iteris and Lindsay Corporation recently announced a smart work zone collaboration, leveraging the existing Lindsay Road Zipper for placing concrete jersey barriers and the industry-leading technology of Iteris. This collaboration promises to improve safety while getting more capacity at a lower cost with existing infrastructure. This also holds promise, on a temporary or permanent basis, for real-time lane reconfiguration in separating today’s traffic from autonomous and connected vehicles.

Currently, much of the mobility ecosystem is siloed to protect proprietary interests, growth, and profits. Silos must be broken down to achieve one efficient, connected, and seamless mobility system focused on the movement of people and goods, not vehicles alone. This can require a significant change in mindset.

New models and methodologies are developing. The emerging 5G coming out in 2019 is estimated to be 100 times faster than current mobile technologies, have more capacity, and dramatically reduce power consumption and communication response times. Artificial Intelligence (AI) is advancing, driven partly by more effectively “mining data” such as IBM’s Watson. Use of Unmanned Aerial Vehicles (drones) has undergone dramatic growth in recent years in an increasing number of markets. Fully autonomous vehicles have arrived although it will likely take longer to have a significant impact than many have projected. Semiautonomous vehicles are increasingly mainstream as manufacturers add new technologies. Final destination methodologies are increasingly deployed whether through mobility as a service, Amazon, FedEx, ridesharing (Uber, Lyft, and others), high-speed transport such as high-speed rail, Hyperloop, and others. Finally, we are on the cusp of technology providing “one-stop shops”, such as Expedia does for airlines and hotels, for simple, connected, seamless, user-friendly trips for people. This has been ongoing in the primarily private sector-based freight industry which is driven by economies of scale, efficiency, and profit. Business to business has recognized for a long time the value of breaking down silos in spite of their need to protect their proprietary interests, growth, and profit. The public sector is more dominant in the movement of people and they seem to struggle more in breaking down silos, in part, to protect public interests including personal data and privacy. Breaking down the silos between public, private, and public and private entities, makes the task of creating one mobility ecosystem enormous. Still, this is an opportunity as the demand for collaboration increases to provide more efficient, cost-effective, environmentally and economically sustainable mobility for the movement of people and goods. This has become a quality of life issue for our planet and our global society.

Reimagining Mobility

Some elements

The future will be what we make it. It will likely be messy, and no one has the answers. The Transportation Research Board 2019 report on Critical Issues in Transportation reflects a smorgasbord of issues, challenges, and opportunities. The report states, “Changes are coming at transportation from all directions, including potentially revolutionary technologies such as drones and automated vehicles, rapid innovations in urban transportation services, unreliable funding for infrastructure and operations, and possible changes in national policies affecting trade, climate, environmental protection, and sources of energy. The potential consequences of these changes could make future congestion, fuel consumption, and emissions either markedly better or markedly worse. Correspondingly, these potential changes could positively or adversely affect commercial truck, rail, aviation, and waterborne networks, with significant implications for the delivery of goods and services, personal travel, and the economy.” What will likely not change is the general systematic process for developing vehicles and infrastructure—planning, design, construction, manufacturing, operations, maintenance.

Despite concerns over privacy, identifying travel patterns is important. Technology has enhanced our ability to do this enabling plans and designs to be developed for improvements.

Sharing data is another important component. How? Simple vehicle/people trackers are available and used while protecting privacy.

Gaining trust is critical and that takes time. This is also easily lost, and everyone must stay mindful of how important this is for the system to work properly, even efficiently. The technology should include the ability for the user to turn the location off unless it has potential safety risks or system impacts which may relate to safety and/or efficiency.

So, what’s in it for me? This has the potential to reduce costs financially and environmentally while improving the overall quality of life, decrease travel time, increase the efficiency of the system, maintain and/or increase the profits of data collectors/owners.

A determination should be made of what is the proprietary in both the public and private spheres.

What are some drivers in reimagining mobility? These include reducing costs for users and the environment, reducing congestion, increasing the capacity of existing infrastructure, reducing travel times, and increasing safety.

What are some obstacles? Privacy continues to dominate, including as an issue in exploring a replacement for the fuel tax such as the vehicle miles traveled tax (VMT) initiated by the State of Oregon. Fielding is another issue. How do you efficiently field new technologies into a fleet of varying types and ages? That is likely messy and will require a long transition. Consolidation, analysis and meaningful output is likely another obstacle. Collecting data is only useful if it can provide meaningful outputs. While 5G will greatly enhance rates, the overall capacity of the system is a predictable obstacle to include adequate data storage capacity. Data centers being developed by Facebook, Microsoft and others may be examples of what will be needed to accommodate this new, emerging mobility ecosystem.

How to Move Forward

Finding a framework is key for the needed public-private partnership to develop. The Intelligent Transportation System (ITS) architecture developed by the U.S. Department of Transportation (USDOT) may be a good model. This architecture attempts to define a system of governance and key architectural elements that must be met by participants, public or private, while not being overly prescriptive. This can be a fine line to walk. The Intelligent Transportation Society of America (ITSA) is a consortium that continues to bring the public and private sectors together to augment USDOT in developing and deploying emerging technologies. In 2019 the Transportation Research Board published the results of a three year study on the future of the interstate highway system, originally planned for a 50 year life, that made several recommendations including that its future should be modeled after the original interstate approach, adjusting the federal fuel tax to the original 90 percent federal share, creation of an Interstate Highway System Renewal and Modernization Program (RAMP), increasing the federal fuel tax to a level commensurate with the federal share required of the RAMP investment and adjusting the tax as needed for inflation and vehicle fuel economy, and with an assumption that it would be at least 2040 before large scale automation occurred. These frameworks of governance have worked in the past and there is every reason to believe they will work in the future. It is critical that the federal and state governments, and their conventions such as the American Association of State Highway and Transportation Officials (AASHTO), lead the way.

It is important to tie this effort to safety, congestion reduction, climate change, resilience, security, economics, quality of life, health, business, asset management including the true costs of travel and supporting infrastructure, sustainability, and overall system performance. This also has the potential to improve other associated elements to include social justice, equity, diversity, increased access, reduced energy consumption, and others. Reimagining mobility has the potential to improve all of these.

In a mobility ecosystem, everything is related to everything else and the progression to it will be challenging, messy, and a long road (no pun intended). However, there are some human elements that will enhance, if not be critical to, success. These include being resilient, collaborative, maintaining a focus on the big picture goal, not getting stuck or lost in the details, and continuing to leverage emerging technologies.