• Home
  • About
  • Services
  • Contact

Leadership in Transportation

~ John L. Craig Consulting, LLC

Leadership in Transportation

Category Archives: Strategic Planning

One Seamless Transportation System 3.0: 7 Tenants for the Future

19 Sunday May 2019

Posted by John L. Craig in Collaboration, Future, Leadership, Management, Strategic Planning, Sustainability, Transportation

≈ Leave a comment

The future of transportation/mobility is about leadership. Seven tenants to improve this include:

  1. Safety: reduce crashes, fatalities, injuries, and property damage

At its base, every department of transportation, their partners, and stakeholders hold their first priority as safety. This is the value we put on life. As the future of transportation and mobility evolve, driven by demand for technology and collaboration, a safe system can be achieved with zero crashes, fatalities, injuries, and property damage. However, human nature cannot be controlled and periodic mishaps are bound to occur. Nonetheless, the future is bright for a safer transportation/mobility system.

  1. Mobility: reduce congestion, increase the capacity of existing infrastructure; connected and intermodal=one seamless transportation system

Every transportation department, their partners, and stakeholders were formed to improve mobility, whether that was getting out of the mud or the interstate highway system. Earlier, these departments were focused on engineering and construction using concrete, asphalt, and steel to predominately build a network of roads and bridges. The complexity for these departments has long since become increasingly multi-faceted, demanding additional disciplines, skill sets, and more understanding. The future of transportation and mobility, again driven by increasing demand for digital technology and collaboration, portends the opportunity for one connected, intermodal, seamless transportation system. The parts to this system are fast emerging in autonomous vehicles, one shop stop apps for routing, transfers and payments, and increasing demands from the public to make it so. This latter is driven largely by demand for access, social justice, greater diversity and other social values for fairness.

  1. Economy: improve access to jobs, products and services, origin, destination, and transport

There is a strong argument that transportation and mobility have been a primary driver of economic growth. This is an especially strong argument in valuing the interstate highway system. Other countries recognize that, too. That is why China is building the “One Belt, One Road” which will result in the largest road network in the world and India’s National Highways Development Project which will result in a road network of over 30,000 miles as an element of their industrial revolution. Our entire society depends on transportation and mobility for access to jobs, public safety, health care, food, recreation, and many others. This access can be as large as the interstate highway system or as small as handicap ramps at intersections and curbs. Transportation and mobility are important at every level of our society although many take it for granted. Increasingly and rightly so, departments of transportation are using various and emerging systems to more directly value the impact of transportation and mobility in the economy. In fact, many have this reflected in their mission statements.

As the future emerges and more efficient, environmentally friending fuels come into the market, the future transportation and mobility system may include a newer user-based system such as a vehicle miles traveled tax or VMT, emerging from the fuel tax invented by the State of Oregon in 1919. This has been demonstrated as feasible for over 10 years by Oregon and other states. As such, the transportation and mobility system may operate more like a utility than it does now.

As the demand for digital technology and collaboration has increased, it requires a workforce that knows and understands how to use them. The rate of change is so rapid that the entire transportation and mobility industry, educators, and job seekers are challenged to keep up.

  1. Environment: improve air, land, and water

As the social consciousness of environmental pollution, impacts, and climate change has increased, the efforts to control, mitigate and cleanup those impacts have correspondingly risen. While the environment and the impacts put upon it are often complex, the ownership is often ambiguous. Although many businesses are leaders in improving the environment, governments at all levels are frequently the leaders in regulating, mitigating and cleaning up impacts. As such, it is increasingly common for departments of transportation to be looked to lead in the environmental arena and mitigate the impacts on air, land, or water. My own sense is that these departments are generally very sophisticated and are up to the task.

  1. Costs: reduce overall costs

Most people, governments, and businesses look closely at the costs in dollars since that is a primary measurement of value in our society. We view our savings, reduced costs, or costs avoided to a lesser degree. These can be significant, especially when viewed broadly such as the time-value to the driver either sitting in traffic, not being able to get to work or appointments on time, emergency responders including ambulances being slowed or stuck in traffic, and the increased opportunity for secondary collisions. Still, other impacts on the environment may be affected and add to global warming. What are the impacts on plants and animals which share our planet and sometimes may represent the “canary in the coal mine”. While direct costs in dollars serve an important purpose, viewing the wider range of costs, including those that are difficult or may not lend themselves to being valued in dollars, can be a challenge. In fact, progress in some areas such as environmental impacts and climate change may not be adequately valued in dollars, in spite of the fact that there are real financial impacts. Taking the “big picture” of the real or estimated costs in dollars or other value systems is difficult. Still, this must be done to more fairly assess the impacts to and within the built and natural environments. Otherwise, decision-making, which always has inherent flaws or risks, will not result in optimal judgments. Our ability to make more informed decisions on the total costs is evolving and improving in many parts of our society, including in transportation and mobility. Some of the systems enabling decision-making are well founded and continue to be well used, such as engineering economics. Others such as balancing the built and natural environments are more challenging but are improving within the emerging discipline of sustainability.

  1. Time: reduce travel time

There is only so much time. Most of us are very protective of it. If we cherish our time, then it makes sense to place a value on it. Increasingly this is done. For example, placing a dollar value on a driver’s time and doing a calculation for a construction contractor’s incentive if work is completed early, or conversely charging a disincentive if work is completed late. Driven by increasing demand for digital technology and collaboration, the transportation/mobility system future promises a transition from a fragmented multimodal system to one connected, seamless, intermodal system that will optimize travel time for each of us.

  1. Support: leverage emerging, business intelligence/analysis, data, and decision-making systems

The six previous tenants are ideas that cannot be achieved without an underlying support system. While these are based on education and research and development, emerging technologies are building tools for creating better built and natural environments. The rapidly evolving arena of the Internet of Things (IoT), big data, business intelligence, and analytics, augmented and virtual reality and others are great, especially when considering the Apple iPhone was only released in 2007. Digital technology is a significant driver in this brave new world of transportation and mobility. Another significant driver is our human ability to collaborate for the greater societal good. Using these emerging tools to create a better transportation and mobility system will be a significant step.

The above seven tenants do not supplant the process of planning, design, construction, operations, and maintenance. At least until there is a better way, these do not supplant many other important elements such as a strong safety culture and program, annual needs assessments and their costs or savings, preserving the existing system, utilization of asset management tools, assessing and documenting infrastructure condition, and monitoring and managing traffic speed and volume.

It is the utility of all tools that will optimize outcomes in creating a better world for us and our posterity.

“The secret of change is to focus all of your energy, not on fighting the old, but on building the new.”

– Socrates

Transportation and Mobility: Past, Present, Future

10 Wednesday Apr 2019

Posted by John L. Craig in Business Transformation, Collaboration, Future, Government & Policy, Strategic Planning, Transportation

≈ Leave a comment

Setting the stage: a brief history

Transportation and transportation infrastructure (heretofore referred to simply as mobility) have been around since the beginning of humans. In fact, the history of people and civilization could be told in terms of mobility. Mobility allowed our species to move out of Africa and around the world in roughly 50,000 years (starting around 60,000-80,000 years ago and completing this global journey around 15,000 years ago). Early components included walking on animal trails and along waterways (rivers, lakes, and ocean), increasingly large and sophisticated floating craft (boats, canoes, ships, and others), and animals domesticated to increase transport (horses, alpacas, camels, and others) over larger and larger expanses. The invention of the wheel (and associated axle) appears to date back to about 5,000 years ago and was a milestone that has resulted in vehicles of increasing size and capability ever since. For at least the last few thousand years virtually all of the mobility system developed based on available data, mathematics, and trial and error. Over time, these components have evolved into an increasingly sophisticated mobility system. The Apian Way allowed the Roman Empire to travel and dominate much of the known world. The Silk Road and others increasingly expanded trade and cultural exchange over vast areas of the globe.

Our forefathers had a great interest in roads, particularly in a “National Road” to connect the emerging United States of America. What eventually became the National Road (also known as the Cumberland Road, Cumberland Pike, National Pike, and Western Pike) was created by an Act of Congress in 1806 and signed into law by President Thomas Jefferson. In many ways, it was an early precursor to the Interstate Highway System. The Act was revolutionary and called for a road connecting the waters of the Atlantic with those of the Ohio River. Federal funding began in Cumberland, Maryland. The predecessors of the National Road included buffalo trails, Native American footpaths, Washington’s Road, and Braddock’s Road. The latter two were developed over part of the Nemacolin Trail, an Indian pathway, as part of the British campaign to evict the French from the forks of the Ohio River. Congress paid for the National Road, in part, by establishing a “2 percent fund” derived from the sale of public lands for the construction of roads through and to Ohio. Construction took longer than expected and the costs of maintenance were underestimated. As a result, tolls were eventually collected to pay for maintenance. To this day underestimating the cost of maintenance is likely true in many states and communities.

In 1919, Oregon was the first to develop a reliable funding mechanism—the fuel tax—which has been the primary funding mechanism for roads and bridges. By 1929, all states had a fuel tax. It was not until 1956, that the federal government created a federal fuel tax—Federal Highway Trust Fund— to pay for construction (not maintenance) of the Dwight D. Eisenhower National System of Interstate and Defense Highways, commonly known as the Interstate Highway System. As of December 2007 (“Peters Quick Action” in Better Roads), the U. S. Secretary of Transportation reported that 40 percent of the Federal Highway Trust Fund is used for other purposes. While much of the first half of the 20th Century was spent “getting out of the mud”, the 50 years subsequent to 1956 were spent building and maintaining the interstate highway system under the responsibility of state departments of transportation. In large part, the 21st Century appears to be ushering in an era of system preservation, due largely to inadequate funding.

As indicated earlier, data for improving mobility is not new and it is reflected in virtually every aspect of the mobility ecosystem. These include engine oil diagnostics which serve to extend engine life, data-based preventative maintenance checks and services and scheduled services for all types of vehicles, data-based structural and functional capacities of roads and bridges, data-based pavement management systems, data-based bridge management systems, data-based needs assessments and estimated costs for repair and replacement of infrastructure (roads, bridges, buildings, runways, etc), data-based asset management for determining priorities of spending within and between modes, analytic tools such as life-cycle costs, return on investments, and many others. In fact, it would be difficult to identify an element of the mobility ecosystem that is not or cannot be managed by data. Of course, this requires good data and that does not always exist. There are many examples of entities that attempt management without good data that is fairly analyzed and with actionable outputs.

In 2007, the first iPhone was fielded, and this serves to mark the beginning of a new era, one driven largely by rapidly evolving digital technology but other elements as well. These elements include other technologies and increasing demand for collaboration. While 2007 was not the beginning it is convenient to view it as an inflection point, especially for mobility. The United States is, and has been, a leader in mobility and that has been a significant multiplier in building our nation’s strong economy.

While much of the rest of the world has lagged behind the United States in the mobility space, it is rapidly catching up. Two examples are China’s “One Belt, One Road” which will result in the largest road network in the world and India’s National Highways Development Project which will result in a road network of over 30,000 miles as an element of their industrial revolution.

Introduction

Transportation is the aging term. Mobility reflects the emerging mobility ecosystem and marketplace. This ecosystem is at an inflection point coupled with the Internet of Things (IoT) and new ways of thinking in the 21st Century. It is an exciting time, with more changes in the next 10 years than perhaps the previous 100, driven by increasing demand for technology and collaboration. It is not an overstatement that today’s new gadgets are tomorrow’s antiques.

While some things will remain the same, this new mobility ecosystem will move inextricably forward as it evolves. We’ll increasingly think and speak in terms of one seamless, connected, efficient, user-friendly, intuitive, multimodal mobility system. Over time we will speak less in terms of buying and owning vehicles, “hard” infrastructure without embedded technology and planning individual modes to get where we want to go. Moreover, this new emerging mobility ecosystem will better connect one global community and economy, with all of its challenges, risks, and opportunities.

In short, mobility is being reimagined.

Current Situation

The mobility ecosystem is complex if it is anything. Modes vary across the world. These modes and some components include planes, trains, automobiles, trucks, transit providers of all types, buses, bicycles, motorcycles, pedestrians, airports, marine/lake/river ships, roads, rail, bridges, marine and freshwater ports, dredging to enable navigable ports and rivers, pipelines, public safety providers, governance in both the public and private sectors, and many others. These provide us access to jobs, medical care, food, fuel, emergency response, vacations, and many others. The size and capacity of many vehicles are growing increasingly from large to gigantic in an effort to gain economies of scale in moving people and goods as much of the supporting infrastructure races to keep up.

Using the United States as a yardstick, the first half of the 20th Century was marked by increasing motorized road, rail, air, and river and blue water conveyance. The second half of the 20th Century was marked by improvements in all areas of conveyance but largely by the creation of the Interstate Highway System. Simplistically, these can be referred to as the motorized conveyance era and Interstate era, respectively. I think it is important to note that the Interstate era also increased the emphasis on safety in an effort to decrease losses in lives and property. This is critical and continues to this day, as it should.

According to historian Jonathan Kenoyer, the concept of using a valueless “technology” instrument to represent transactions dates back 5,000 years, when the Mesopotamians used clay tablets to conduct trade with the Harappan civilization. While cumbersome, a slab of clay with seals from both civilizations certainly beat the tons of copper each of which had to be melted down to produce coins. Fast forward to the mid 20th Century, the Diners Club Card was the first credit card in widespread use by 1951. American Express introduced the first plastic card in 1959. Within five years, one million American Express cards were in use. In the 1950s-1960s my father, who worked for DX Oil Company, talked about them working on a card that could be used to pay for gas and enable self-service dispensing of fuel. The card became one of the ubiquitous credit cards. While credit cards have been upgraded over time to include passwords, security codes, and chips, today’s technology changes at increasingly rapid rates (the iPhone with its camera, GPS, apps and other associated technologies is just one example).

With the rapid advances in technology in the early 21st Century, the opportunities for mobility to be reimagined has never been greater and this has only just begun.

New technologies do not have to function on their own and frequently do not. For example, Iteris and Lindsay Corporation recently announced a smart work zone collaboration, leveraging the existing Lindsay Road Zipper for placing concrete jersey barriers and the industry-leading technology of Iteris. This collaboration promises to improve safety while getting more capacity at a lower cost with existing infrastructure. This also holds promise, on a temporary or permanent basis, for real-time lane reconfiguration in separating today’s traffic from autonomous and connected vehicles.

Currently, much of the mobility ecosystem is siloed to protect proprietary interests, growth, and profits. Silos must be broken down to achieve one efficient, connected, and seamless mobility system focused on the movement of people and goods, not vehicles alone. This can require a significant change in mindset.

New models and methodologies are developing. The emerging 5G coming out in 2019 is estimated to be 100 times faster than current mobile technologies, have more capacity, and dramatically reduce power consumption and communication response times. Artificial Intelligence (AI) is advancing, driven partly by more effectively “mining data” such as IBM’s Watson. Use of Unmanned Aerial Vehicles (drones) has undergone dramatic growth in recent years in an increasing number of markets. Fully autonomous vehicles have arrived although it will likely take longer to have a significant impact than many have projected. Semiautonomous vehicles are increasingly mainstream as manufacturers add new technologies. Final destination methodologies are increasingly deployed whether through mobility as a service, Amazon, FedEx, ridesharing (Uber, Lyft, and others), high-speed transport such as high-speed rail, Hyperloop, and others. Finally, we are on the cusp of technology providing “one-stop shops”, such as Expedia does for airlines and hotels, for simple, connected, seamless, user-friendly trips for people. This has been ongoing in the primarily private sector-based freight industry which is driven by economies of scale, efficiency, and profit. Business to business has recognized for a long time the value of breaking down silos in spite of their need to protect their proprietary interests, growth, and profit. The public sector is more dominant in the movement of people and they seem to struggle more in breaking down silos, in part, to protect public interests including personal data and privacy. Breaking down the silos between public, private, and public and private entities, makes the task of creating one mobility ecosystem enormous. Still, this is an opportunity as the demand for collaboration increases to provide more efficient, cost-effective, environmentally and economically sustainable mobility for the movement of people and goods. This has become a quality of life issue for our planet and our global society.

Reimagining Mobility

Some elements

The future will be what we make it. It will likely be messy, and no one has the answers. The Transportation Research Board 2019 report on Critical Issues in Transportation reflects a smorgasbord of issues, challenges, and opportunities. The report states, “Changes are coming at transportation from all directions, including potentially revolutionary technologies such as drones and automated vehicles, rapid innovations in urban transportation services, unreliable funding for infrastructure and operations, and possible changes in national policies affecting trade, climate, environmental protection, and sources of energy. The potential consequences of these changes could make future congestion, fuel consumption, and emissions either markedly better or markedly worse. Correspondingly, these potential changes could positively or adversely affect commercial truck, rail, aviation, and waterborne networks, with significant implications for the delivery of goods and services, personal travel, and the economy.” What will likely not change is the general systematic process for developing vehicles and infrastructure—planning, design, construction, manufacturing, operations, maintenance.

Despite concerns over privacy, identifying travel patterns is important. Technology has enhanced our ability to do this enabling plans and designs to be developed for improvements.

Sharing data is another important component. How? Simple vehicle/people trackers are available and used while protecting privacy.

Gaining trust is critical and that takes time. This is also easily lost, and everyone must stay mindful of how important this is for the system to work properly, even efficiently. The technology should include the ability for the user to turn the location off unless it has potential safety risks or system impacts which may relate to safety and/or efficiency.

So, what’s in it for me? This has the potential to reduce costs financially and environmentally while improving the overall quality of life, decrease travel time, increase the efficiency of the system, maintain and/or increase the profits of data collectors/owners.

A determination should be made of what is the proprietary in both the public and private spheres.

What are some drivers in reimagining mobility? These include reducing costs for users and the environment, reducing congestion, increasing the capacity of existing infrastructure, reducing travel times, and increasing safety.

What are some obstacles? Privacy continues to dominate, including as an issue in exploring a replacement for the fuel tax such as the vehicle miles traveled tax (VMT) initiated by the State of Oregon. Fielding is another issue. How do you efficiently field new technologies into a fleet of varying types and ages? That is likely messy and will require a long transition. Consolidation, analysis and meaningful output is likely another obstacle. Collecting data is only useful if it can provide meaningful outputs. While 5G will greatly enhance rates, the overall capacity of the system is a predictable obstacle to include adequate data storage capacity. Data centers being developed by Facebook, Microsoft and others may be examples of what will be needed to accommodate this new, emerging mobility ecosystem.

How to Move Forward

Finding a framework is key for the needed public-private partnership to develop. The Intelligent Transportation System (ITS) architecture developed by the U.S. Department of Transportation (USDOT) may be a good model. This architecture attempts to define a system of governance and key architectural elements that must be met by participants, public or private, while not being overly prescriptive. This can be a fine line to walk. The Intelligent Transportation Society of America (ITSA) is a consortium that continues to bring the public and private sectors together to augment USDOT in developing and deploying emerging technologies. In 2019 the Transportation Research Board published the results of a three year study on the future of the interstate highway system, originally planned for a 50 year life, that made several recommendations including that its future should be modeled after the original interstate approach, adjusting the federal fuel tax to the original 90 percent federal share, creation of an Interstate Highway System Renewal and Modernization Program (RAMP), increasing the federal fuel tax to a level commensurate with the federal share required of the RAMP investment and adjusting the tax as needed for inflation and vehicle fuel economy, and with an assumption that it would be at least 2040 before large scale automation occurred. These frameworks of governance have worked in the past and there is every reason to believe they will work in the future. It is critical that the federal and state governments, and their conventions such as the American Association of State Highway and Transportation Officials (AASHTO), lead the way.

It is important to tie this effort to safety, congestion reduction, climate change, resilience, security, economics, quality of life, health, business, asset management including the true costs of travel and supporting infrastructure, sustainability, and overall system performance. This also has the potential to improve other associated elements to include social justice, equity, diversity, increased access, reduced energy consumption, and others. Reimagining mobility has the potential to improve all of these.

In a mobility ecosystem, everything is related to everything else and the progression to it will be challenging, messy, and a long road (no pun intended). However, there are some human elements that will enhance, if not be critical to, success. These include being resilient, collaborative, maintaining a focus on the big picture goal, not getting stuck or lost in the details, and continuing to leverage emerging technologies.

One Seamless Transportation System

08 Monday Feb 2016

Posted by John L. Craig in Business Transformation, Dynamic Transportation Management, Future, Government & Policy, Strategic Planning, Sustainability, Transportation

≈ Leave a comment

The idea of one seamless transportation system has existed for many years. Currently we have strong transportation modes, but one seamless transportation system is lacking. Over the past 100 years we have become a nation that is car-centric, and our system of roads, highways and interstate allow us largely to travel where we want, when we want. I count myself among the many that are car-centric. In spite of the negative impacts of this surface transportation system, it has driven our economy to be the strongest in the world. However, if we want to connect various modes—public transportation, airports, trains, marine and inland water navigation etc.—we are frequently left to our own devices in getting where we want, when we want. This can be inefficient, ineffective and frustrating. As an example, in many areas of the country public transportation does not connect to airports, train stations or water navigation. While several urban areas have developed these connections, there is still a long way to go.

One Seamless Transportation SystemAlthough infrastructure will continue to be important to add value by connecting these “edges”, digital technology can act as a valuable force-multiplier in bringing a multimodal system to an emerging intermodal system and finally to one seamless system. The value of connecting these edges adds enormously to our economy and quality of life. In many ways these “edges” reflect the richness and value at intersecting biomes, a fact known by ecologists for many years. The freight industry has long recognized that their business relies on one connected freight system. Otherwise, products would be delayed, not delivered and at times products would rot. A national freight program has emerged in recent years, bearing testimony to its importance. While there are still needed improvements in the freight system, the efficient movement of people has lagged. This is an opportunity to be seized.

Strategic planning to achieve one seamless transportation system is a collaborative affair with inclusive interests. There is no entity, to my knowledge, that is not dependent on some form of transportation. Our economy and quality of life depend on a safe and reliable transportation system. In fact, the history of human colonization, societies and economies on planet Earth could be told in the context of transportation with all of its components.

These are exciting and challenging times in transportation, with perhaps more changes in the next 10 years than in the previous 60, or even the previous 100. In spite of the challenges, including to find a replacement for the fuel tax, mobility is the imperative, not infrastructure, vehicles, digital technology or other elements alone. It is about convenience, quality and affordability, using transportation to improve lives. Thus, we are at a watershed moment in time that requires that we change the way we think and act to build one seamless “transportation ecosystem” that will save lives, save costs, reduce congestion, reduce pollution and mitigate climate change, create jobs, grow the economy and increase customer service and satisfaction.

The industry has been slowly moving in this direction for some time but has failed to realize any significant improvement in developing one seamless system. In a previous blog (The Future of Transportation…September 2015) I reviewed the history leading to the start of the interstate highway system. The general concept for an interstate highway system was created during the World War I era as a means for defense and to spur economic growth—the Pershing Map, named for General John J. Pershing. The concept for an interstate highway system was further advanced based on the experience of Dwight D. Eisenhower shortly after World War I where a transcontinental road trip took weeks, and then during World War II as he recognized the efficiency and speed of the German Autobahn. During the intervening 30 years there was general consensus as to what the interstate highway system should look like but there was no agreement as to how it should be paid for. The States did not sit idle then, as they are not now. Oregon invented the fuel tax in 1919 and within 10 years every state had adopted a fuel tax to build the infrastructure (roads) to primarily “get out of the mud”. States, including Kansas, Oklahoma and others, also built toll roads, just as the states and locals had built toll bridges for many years before, to increase connectivity and spur economic development. Finally, agreement was reached to adopt a federal fuel tax and fund the construction (not maintenance) of the interstate system through the National Interstate and Defense Highways Act of 1956. The evidence is overwhelming that the interstate highway system, and transportation in general, has improved our economy and quality of life.

The question now is will it take another 30 plus years to decide what our future transportation system should be and how to pay for it? This does not even include the needs of other forms of infrastructure for water, waste water, power etc. that our society has become dependent on.

Once again, I believe the evidence is clear that states are leading the way in further developing transportation and how to fund it. However, this time there are two other events driving this:

  1. Rapidly evolving digital technology and
  2. Increasing demand for collaboration, especially with the private sector

Technology, especially digital technology, is evolving at breath-taking speed. As such, the public sector is not well suited to rapidly adjust to these changes in technology. The private sector is much better suited and again, I believe, there is evidence that the private sector will drive much of the transportation future. We are already witnessing this with Lyft, UBER, autonomous vehicles, connected vehicles, intelligent infrastructure, continuing to evolve intelligent transportation systems, drones, automated machine control, positive train control, just-in-time delivery services, Internet shopping and delivery, “big data” and resulting useful information, and other changes across all modes of transportation. Many of these technologies and businesses did not even exist a few years ago. This does not even contemplate other rapidly evolving technologies impacted by nanotechnology and other advances in materials.

Our societal values have also evolved. For example, we are much more aware of the risks to life and the economy from driving. Thus a safe transportation system is valued more highly than in the past. We recognize the impact that the built environment can have on our natural environment and the attention to maintaining and improving the natural environment has dramatically increased, largely since the National Environmental Policy Act (NEPA) of 1970. Other aspects such as societal justice has evolved. In reality there is no single solution to the way our society evolves, it is more a matter of weighing informed choices in decision-making. This has resulted in a relatively new field—sustainability—which “balances” our society, environment and economic interests.

The number of licensed drivers and privately owned vehicles is declining. Our society is aging as “baby boomers” move into “retirement” age, an indication of changing demographics. While oil is currently in abundance, it is not a renewable resource and the use of alternative fuels and more efficient vehicles continues to evolve. Debt is increasing, whether our national debt or the result of student loans. Wages are static. These only begin to portend some of the changes in our world, with little deference to the changing international landscape.

So, it is important, if not essential, to be as inclusive as possible when doing strategic planning. While strategic planning is more precise for the relative near-term, the long-term is much less clear. Perhaps the best we can do is to develop and be mindful of a “cone of possibilities” which so-called futurists propose. How many years a plan should be forward looking is open to discussion. However, strategic planning could be easily constructed along time horizons of a few years and up to 50 or more, realizing that longer time frames will be less certain with a point of diminishing returns. In my opinion, these strategic plans should be updated perhaps every five years based on how rapidly our world is changing.

While the visioning of a strategic plan is important, it is also important to identify next steps with specific and measurable performance measures and who is responsible for actions.

Since our economy and quality of life will be impacted by what we do, all citizenry interests must be represented to include pedestrians, bicyclist, motorcyclists, automobile drivers, truckers, rail roads, aviation, digital technology interests, ride sharing/taxi cab providers, public transportation, government, emergency responders (including fire departments and police), utilities, schools and academia, consultants, contractors, economists and economic developers, environmental interests, business owners, marine and inland water shippers, ports and others. While participation by these various interests cannot be guaranteed, outreach is necessary to solicit as much participation as possible. This must be balanced to avoid being “frozen” into inaction. The goal is for general consensus, knowing that complete agreement is rarely, if ever, obtained.

With these efforts, it is hoped that our societal buy-in for transportation strategic plans at the federal, regional, state and locals will advance our progress in developing one seamless system, using transportation to improve lives.

“Explore this next great frontier where boundaries between work and higher purpose are merging into one, where doing good is good for business.”

-Richard Branson

“If your actions inspire others to dream more, learn more, do more and become more, you are a leader.”

-John Quincy Adams

Subscribe

  • Entries (RSS)
  • Comments (RSS)

Archives

  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • Asset & Life Cycle Management
  • Biological Diversity
  • Biomimicry
  • Business Transformation
  • Clean Energy
  • Climate
  • Collaboration
  • Connected and Autonomous Vehicles (CAV)
  • Dynamic Transportation Management
  • Economy
  • Environment
  • Extinction of Species
  • Future
  • Government & Policy
  • Internet of Things or IoT
  • Leadership
  • Learning and Success
  • Management
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Owner
  • Pedestrians
  • Performance Measurement and Management
  • Program Management
  • Relationships
  • Resilience
  • Results
  • Ride Sharing
  • Safety
  • Smart Cities
  • Society
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust

Meta

  • Register
  • Log in

Recent Posts

  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 2: Safety, Smart Cities)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 1: Introduction, Setting the Stage, The Future of Transportation)
  • One Seamless Transportation System 3.0: 7 Tenants for the Future
  • Transportation and Mobility: Past, Present, Future
  • Transportation and Infrastructure Executive Daily Operations: a Generic Outline and Primer

Recent Comments

Archives

  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • Asset & Life Cycle Management
  • Biological Diversity
  • Biomimicry
  • Business Transformation
  • Clean Energy
  • Climate
  • Collaboration
  • Connected and Autonomous Vehicles (CAV)
  • Dynamic Transportation Management
  • Economy
  • Environment
  • Extinction of Species
  • Future
  • Government & Policy
  • Internet of Things or IoT
  • Leadership
  • Learning and Success
  • Management
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Owner
  • Pedestrians
  • Performance Measurement and Management
  • Program Management
  • Relationships
  • Resilience
  • Results
  • Ride Sharing
  • Safety
  • Smart Cities
  • Society
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Recent Posts

  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 2: Safety, Smart Cities)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 1: Introduction, Setting the Stage, The Future of Transportation)
  • One Seamless Transportation System 3.0: 7 Tenants for the Future
  • Transportation and Mobility: Past, Present, Future
  • Transportation and Infrastructure Executive Daily Operations: a Generic Outline and Primer

Recent Comments

Archives

  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • Asset & Life Cycle Management
  • Biological Diversity
  • Biomimicry
  • Business Transformation
  • Clean Energy
  • Climate
  • Collaboration
  • Connected and Autonomous Vehicles (CAV)
  • Dynamic Transportation Management
  • Economy
  • Environment
  • Extinction of Species
  • Future
  • Government & Policy
  • Internet of Things or IoT
  • Leadership
  • Learning and Success
  • Management
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Owner
  • Pedestrians
  • Performance Measurement and Management
  • Program Management
  • Relationships
  • Resilience
  • Results
  • Ride Sharing
  • Safety
  • Smart Cities
  • Society
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Recent Posts

  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 2: Safety, Smart Cities)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 1: Introduction, Setting the Stage, The Future of Transportation)
  • One Seamless Transportation System 3.0: 7 Tenants for the Future
  • Transportation and Mobility: Past, Present, Future
  • Transportation and Infrastructure Executive Daily Operations: a Generic Outline and Primer

Recent Comments

Archives

  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • Asset & Life Cycle Management
  • Biological Diversity
  • Biomimicry
  • Business Transformation
  • Clean Energy
  • Climate
  • Collaboration
  • Connected and Autonomous Vehicles (CAV)
  • Dynamic Transportation Management
  • Economy
  • Environment
  • Extinction of Species
  • Future
  • Government & Policy
  • Internet of Things or IoT
  • Leadership
  • Learning and Success
  • Management
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Owner
  • Pedestrians
  • Performance Measurement and Management
  • Program Management
  • Relationships
  • Resilience
  • Results
  • Ride Sharing
  • Safety
  • Smart Cities
  • Society
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Blog at WordPress.com.

Cancel