• Home
  • About
  • Services
  • Contact

Leadership in Transportation

~ John L. Craig Consulting, LLC

Leadership in Transportation

Monthly Archives: January 2021

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 3: Economics of Electric Vehicles and the Decline of Oil)

31 Sunday Jan 2021

Posted by John L. Craig in Batteries, Climate, Economics, Electric Vehicles, Future, Gas-Fueled Vehicles, Mobility, Mobility Ecosystem, Oil, Transportation

≈ Leave a comment

As with other subjects, the literature and development of electric vehicles (EVs) and oil is vast and evolving. What can be gleaned, generalized, and estimated is this (Reichert, 2017; Idaho National Laboratory, n.d.; Skeptics, n.d.; Evannex, 2018; Schmidt, 2017):

  • there are growing advantages to electric vehicles
  • a battery charge can go 400-600 miles
  • there are approximately 20 moving parts in a EV versus 2,000 moving parts in internal combustion vehicles
  • there is zero maintenance except for tires
  • EVs are 90 percent cheaper to operate
  • The estimated life of an EV may be 500,000-1,000,000 miles

Globally, peak car ownership is projected to occur by 2035. Cars are used only 4% of the time, and by 2023 it is estimated that EVs will reach parity with the cost of gas-fueled vehicles (Ingham, 2019; Weiland, et al, 2017; Gearino, 2020). As younger generations consider the cost of car ownership, a review of vehicle registration records in more than 200 metro areas revealed that per-capita car purchases increased 0.7 percent on average in the years after Uber, Lyft and other e-taxi giants deployed their fleets, compared to projected registration rates prior to the entry of the companies. These were very slow years for car dealerships, partly due to the pandemic in 2020 (Naughton and Welch, 2019; Wilson, 2021).

The first nine months of 2020 saw car sales crater (Figure 2). Every major automaker was impacted with the exception of Tesla. The electric automaker sold more cars than ever before. Even as the rest of the economy froze, Tesla posted its longest stretch of profitable quarters, increased stock value over 750 percent, is now the largest U. S. vehicle manufacturer, became the 6th largest U. S. company, and ended the year with inclusion in the S&P 500 stock index. A closer look reveals AVs in general managed to thrive even as sales of traditional cars declined. Both Volkswagen and Daimler saw record-setting losses in total sales while sales of their EVs doubled.

This image has an empty alt attribute; its file name is electric-vehicles-defy-slump.png
FIGURE 2. Electric vehicles defy the COVID slump. EV sales grew in 2020, while the rest of the industry crumbled. Sales volumes compare the first three quarters of 2020 with the same period in 2019. R-N-M refers to the Renault-Nissan-Mitsubishi Motors alliance. (Randall and Warren, 2020)

While the sale of electric vehicles has been increasing for some years, there is also a need for the infrastructure and charging stations to support it (Figure 3).

FIGURE 3. Electric cars and the needed infrastructure are still rare in the U. S., but are becoming more common each year (Source: U. S. DOE; Transportation Research Center at Argonne National Laboratory in Welch, 2021).

The Biden Administration wants to increase charging stations by half a million as part of their effort to cut carbon emissions to zero by 2050. As such, new gas-powered cars and trucks would have to be phased out rapidly, probably by 2035 or sooner. That means aggressive action would have to continue. (Welch, 2021).

The energy sector is undergoing a major transformation and it will intensify as more and more consumers, especially in the transportation industry, change their purchase decisions to cleaner and less expensive options in the marketplace (i.e. EVs over internal combustion vehicles) (Figure 4).

FIGURE 4. Clean energy market caps have surpassed those of oil companies. NextEra Resources is the world’s largest producer of wind and solar energy. Enel is an international manufacture and distributor of electricity and gas. Iberdola is the world’s largest producer of wind energy. Orsted is a Danish renewable energy company. Exxon is one of the world’s largest petroleum companies. Eni is a multinational fossil fuel company. Repsol is a multinational fossil fuel company. BP is a nultinational fossil fuel company. (Source Eckhouse, et al, 2020)

Batteries are a technology, not a fuel, which means the more that are produced, the cheaper they are to make. However, up until now, EVs have been more expensive to build than gasoline cars. That’s changing (Figure 5).

FIGURE 5. In 2020, some batteries were built for $100 per kWh, paving the way for EVs to become the cheapest option compared to oil. (Source Randall & Warren, 2020)

This past year saw the first companies producing batteries at a cost of $100 per kilowatt-hour. That’s the point that analysts believe will bring the cost of building electric cars in parity with similar gasoline vehicles. After that, EVs should only get less expensive.

Volkswagen, the biggest automaker by cars sold, confirmed that its batteries had reached the $100 threshold for its 2020 ID.3 sedan and upcoming ID.4 compact SUV (Matousek, 2019). China’s CATL, the world’s biggest battery supplier, also claimed $100 battery nirvana as it struck deals across the auto industry (Schmidt, 2020). In addition, Tesla plans to manufacture battery cells, a first for any automaker, and to reduce battery costs 56% by 2023 (Spector, 2020).

Most recently, President Biden has announced his intent to convert the federal vehicle fleet of 645,000 vehicles to electric (Dow, 2021). Still, we need to remain aware of the basic infrastructure required for migration to electric vehicles, charging stations scattered across the Nation, and power generation and network to provide adequate electricity.

General Motors has announced it intends to stop making gas- and diesel-powered vehicles and go all electric by 2035 and be carbon neutral by 2040 (Colias, 2021).

Amazon is also in the process of having 10,000 electric delivery vans on the road by 2022, and 100,000 by 2030 (Hawkins, 2020).

In spite of the Pandemic, 2020 experienced a 30 percent increase in electric vehicle sales and that is expected to increase to 72% in 2021, charging stations infrastructure has lagged (BlastPoint, 2021).

We are near a “tipping point”.

Another aspect to consider, the cost and weight of a power train goes up for large EV vehicles (trains, heavy trucks, and buses), essentially losing any EV advantage. That is a reason Cummins Diesel is looking to use hydrogen fuel cells for these types of large vehicles (Nagel, 2020; Ohnsman, 2020).

A dirty secret of EV— the extraction of minerals such as cobalt used to make batteries is frequently done by child labor (Broom, 2019).

Literature Cited

BlastPoint (2021). 2021 EV Outlook. BlastPoint. Retrieved January 31, 2021, from https://blastpoint.co/wp-content/uploads/2020/02/BlastPoint-2021-EV-Outlook_Report.pdf

Broom, D. (2019, March 27). The dirty secret of electric vehicles. World Economic Forum. Retrieved January 31, 2021, from https://www.weforum.org/agenda/2019/03/the-dirty-secret-of-electric-vehicles/

Colias, M. (2021, January 28). GM to phase out gas- and diesel-powered vehicles by 2035. The Wall Street Journal. Retrieved January 31, 2021, from https://www.wsj.com/articles/gm-sets-2035-target-to-phase-out-gas-and-diesel-powered-vehicles-globally-11611850343

Dow, J. (2021, January 25). President Biden will make entire 645k federal vehicle fleet electric. electrek. Retrieved January 31, 2021, from https://electrek.co/2021/01/25/president-biden-will-make-entire-645k-vehicle-federal-fleet-electric/

Eckhouse, B., R. Morison, W. Mathis, W. Wade, and H. Warren (2020, November 29). The new energy giants are renewable companies. Bloomberg Green. Retrieved January 30, 2021 from https://www.bloomberg.com/graphics/2020-renewable-energy-supermajors/

Evannex. (2018, September 22). Here’s seven reasons why electric vehicles will kill the gas car. InsideEVs. Retrieved January 31, 2021, from https://insideevs.com/news/340502/heres-seven-reasons-why-electric-vehicles-will-kill-the-gas-car/

Gearino, D. (2020, July 31). Electric cars will cost same as gas models as soon as 2023, researchers say. KQED. Retrieved January 30, 2021 from https://www.kqed.org/science/1967914/electric-cars-will-cost-same-as-gas-models-as-soon-as-2023-researchers-say

Hawkins, A.J. (2020, October 8). Amazon unveils its new electric delivery vans built by Rivian. The Verge. Retrieved January 31, 2021 from https://www.theverge.com/2020/10/8/21507495/amazon-electric-delivery-van-rivian-date-specs

Idaho National Laboratory. (n.d.). How do gasoline & electric vehicles compare? INL. Retrieved January 31, 2021, from https://avt.inl.gov/sites/default/files/pdf/fsev/compare.pdf

Ingham, L. (2019, January 4). Peak car approaches: car ownership will decline after 2034. Verdict. Retrieved January 30, 2021, from https://www.verdict.co.uk/peak-car-ownership-decline-2034/

Matousek, M. (2019, September 10). Volkswagen has reportedly reached a big milestone in battery costs that would heat up its competition with Tesla. Business Insider. Retrieved January 31, 2021, from https://www.businessinsider.com/vw-electric-cars-battery-costs-versus-tesla-2019-9#

Nagel, M. (2020, September 22). From advanced diesel to hydrogen: Four ways Cummins is committed to meeting energy demands. Cummins Newsroom. Retrieved January 31, 2021, from https://www.cummins.com/news/2020/09/22/advanced-diesel-hydrogen-four-ways-cummins-committed-meeting-energy-demands

Naughton, K. and D. Welch. (2019, February 28). This is what peak car looks like: For many people, new forms of mobility are making privately owned vehicles obsolete. Bloomberg Businessweek. Retrieved January 30, 2021, from https://www.bloomberg.com/news/features/2019-02-28/this-is-what-peak-car-looks-like

Ohnsman, A. (2020, November 16). Diesel engine giant Cummins plans hydrogen future — with trains coming before trucks. Forbes. Retrieved January 31, 2021, from https://www.forbes.com/sites/alanohnsman/2020/11/16/diesel-engine-giant-cummins-plans-hydrogen-futurewith-trains-coming-before-trucks/?sh=3bb5e8266ad2

Randall, T. and H. Warren (2020, December 1). Peak oil is suddenly upon US. Bloomberg Green. Retrieved January 30, 2021, from https://www.bloomberg.com/graphics/2020-peak-oil-era-is-suddenly-upon-us/

Reichert, E. (2017, May 11). Electric car components: gas vs. electric. NAPA. Retrieved January 31, 2021 from https://knowhow.napaonline.com/electric-car-components-gas-vs-electric/

Schmidt, B. (2020, May 22). CATL boss opens up about Tesla electric car battery deal. The Driven. Retrieved January 31, 2021, from https://thedriven.io/2020/05/22/catl-boss-opens-up-about-tesla-electric-car-battery-deal/

Schmidt, E. (2017, September 6). Top 12 reasons why electric cars are better than gas cars. Fleetcarma. Retrieved January 31, 2021, from https://www.fleetcarma.com/why-electric-cars-are-better-than-gas-top/

Skeptics. (n.d.). Do electric cars inherently consist of fewer parts than combustion engine cars? Stack Exchange. Retrieved January 31, 2021, from https://skeptics.stackexchange.com/questions/40383/do-electric-cars-inherently-consist-of-fewer-parts-than-combustion-engine-cars

Spector, J. (2020, September 22). Tesla battery day: expect battery cost to drop by half within 3 years. gtm. Retrieved January 31, 2021, from https://www.greentechmedia.com/articles/read/tesla-battery-day-cost-reduction-three-years

Weiland, J. and J. Walker (2017, December 6). Why peak car ownership in 2020 Isn’t So Farfetched. HuffPost. Retrieved January 30, 2021, from https://www.huffpost.com/entry/why-peak-car-ownership-in_b_12200628

Welch, C. (2021, January 22). Has the electric car’s moment arrived at last? National Geographic. Retrieved January 30, 2021, from https://www.nationalgeographic.com/environment/2021/01/has-electric-car-moment-arrived-at-last/

Wilson, K. (2021, January 8). Study: e-taxis increase private car ownership in many cities. StreetsBlog USA. Retrieved January 30, 2021, from https://usa.streetsblog.org/2021/01/08/study-e-taxis-increase-private-car-ownership-in-many-cities/

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 2: Safety, Smart Cities)

18 Monday Jan 2021

Posted by John L. Craig in Biological Diversity, Clean Energy, Climate, Connected and Autonomous Vehicles (CAV), Economy, Electric Vehicles, Environment, Extinction of Species, Future, Internet of Things or IoT, Mobility as a Service, Mobility Ecosystem, Multimodal, Pedestrians, Resilience, Ride Sharing, Safety, Smart Cities, Society, Technology, Transportation

≈ Leave a comment

Safety

There is likely not a transportation agency or company that does not consider safety as their number one priority. This is how it should be. The very first roadway powered vehicle fatality in the United States was on September 13, 1899, when Henry Hale Bliss, a 69-year-old local real estate dealer, was dismounting a southbound 8th Avenue trolley car in New York City when an electric-powered taxi cab struck him. Bliss hit the pavement, crushing his head and chest. Bliss died from his sustained injuries the next morning (Eschner, 2017). A plaque was dedicated at the site on September 13, 1999, to commemorate the centenary of this event. It reads:

Here at West 74th Street and Central Park West, Henry H. Bliss dismounted from a streetcar and was struck and knocked unconscious by an automobile on the evening of September 13, 1899. When Mr. Bliss, a New York real estate man, died the next morning from his injuries, he became the first recorded motor vehicle fatality in the Western Hemisphere. This sign was erected to remember Mr. Bliss on the centennial of his untimely death and to promote safety on our streets and highways.

Since then, it has been a continual challenge to reduce fatalities, injuries, and property damage. Entire industries have grown up during this time (insurance, roadway policing, etc.).

More recently, while technology and autonomous vehicles hold promise to reduce and perhaps eliminate crashes, it will be many years and probably decades before a significant impact occurs. The United States alone averages 30-40,000 roadway deaths a year. Globally there are 1.35 million people annually killed on roadways around the world (3,700/day) with a $1.8 trillion economic cost in 2010 U. S. dollars (Road Traffic Injuries and Deaths—A Global Problem, n.d.). In the meantime, efforts must continue to protect people. Within the past decade, many in the industry have set goals for zero fatalities. As an example, one of these is Houston’s Vision Zero Action Plan (Begley, 2020). The city’s plan identifies 13 “priority actions” the city is committing to take. Among them:

  • construct at least 50 miles of sidewalks annually
  • build at least 25 miles of dedicated bike lanes annually
  • evaluate road projects for options to include sidewalks, bike trails and other amenities
  • redesign 10 locations with high numbers of incidents every two years, and make those changes within the following calendar year

Additionally, the plan calls on the city to train its employees on how to talk about crashes to avoid victim-blaming or playing down safety issues. It also calls for a detailed analysis of Vision Zero’s progress to be made publicly available.

These are not particularly unique actions to improve safety, as professionals work every day—through planning, design, construction, operations, maintenance, education, and collaboration—to reduce, if not eliminate, crashes and the circumstances that lead to them in an effort to keep people safe. However, “action” is the operative word just as Houston is doing.

Smart Cities and Concepts

Advances in policy, planning, partnerships, and innovation are being developed at all governmental levels in an effort to provide a framework for the public and private sectors to work in unison within an architecture to increase effective and efficient mobility. An early example of this is the Intelligent Transportation System or ITS Architecture developed by the U. S. Department of Transportation in conjunction with many partners and issued in 2001.

There are a number of concepts that can and have been referred to as “Smart Cities” or “Smart City Concepts”. These have evolved especially during the technology revolution of the past two decades. This list is far from exhausting the myriad concepts or disciplines. The following discusses some of these disciplines and concepts, in no particular order, and none fit neatly within one topic.

Some disciplines in these concepts:

  • Strategic Planning. This is the starting point for virtually everything else. It is, of course, preceded by the necessary outreach, listening, team building, and collaboration needed to build a strategy.
  • Performance Metrics. Tracking progress toward meeting the goals imbedded within the strategic plan is equally important. Any plan becomes useless without progress toward obtaining it and performance metrics provide that tool to measure progress.
  • Connected and Automated Vehicles (CAV). Driven by rapidly developing technologies, CAV primarily provides more capacity from infrastructure, essentially reducing costs and improving safety.
  • Clean Energy—Maturing Alternative Fuel Technologies. The Industrial Age and resulting pollution and climate change that resulted have demanded clean energy in all its forms—solar, wind, hydrogen fuel cell, and electricity. Electricity is currently most dominant.
  • Electrification. As electricity emerges as the clean energy fuel, vehicle manufactures and governments are rapidly moving forward to increase electric vehicle use and reduce carbon-based vehicle use. The Governor of California has mandated no new internal combustion vehicle sales within California after 2035 while electric vehicle use continues to rise, and many states and communities are encouraging their use with supporting infrastructure. California has led many areas in the mobility space so this is one to watch.
  • Hydrogen Fuel Cells. Recently, the diesel engine manufacturer Cummins is developing hydrogen fuel cell engines that they believe will be efficient and compete favorably with electricity for heavy vehicles such as buses, heavy trucks, and trains.
  • Mobility as a Service/Mobility on Demand. Mobility as a Service, or MaaS, also known as Transportation as a Service, provides services typically with a joint digital channel that enables users to plan, book, and pay for trips. This is part of a more global shift from personally-owned vehicles to mobility provided as a service. Micro-mobility and micro-transit are also emerging (Regional transportation study suggests ‘’micro-transit’, 2020).
  • Car and Ride Sharing. Car and ride sharing has been around for decades, but the technology of recent years has allowed it to become much more effective and efficient as evidenced by the rise of Lyft and Uber.
  • Increasing Biking, Scooters, and Pedestrian Mobility. In recent years as a means to reduce car usage especially in metropolitan areas, bike lanes, trails, sidewalks, and scooter/bicycle rentals are increasing. These have the ability to also improve health while reducing congestion and increasing the capacity of infrastructure.
  • Big Data. This is the best of continuous improvement. Virtually every organization has legacy systems of data, physical (e.g. file cabinets) or electronic (e.g. servers or the cloud). For a variety of reasons, these data have resided in ”silos” and are not easily accessed and analyzed from broader, more complex perspectives. New technologies and related tools are now allowing “big data” to be accessed and analyzed with resulting increases in efficiency and performance.
  • Risk. Risk has always existed and is dominant in mega and giga projects as evidenced in projects such as the California High Speed Rail. While private companies have had risk management programs for years, the most recent federal transportation act (Fixing America’s Surface Transportation or “FAST Act,” 2015) requires states to have a risk management program. Using different tools to anticipate potential challenges (e.g. lost revenues) as well as opportunities (e.g. lost opportunities to increase revenues), these tools allow proactive development of strategies to mitigate and address the challenges as they occur vice the turmoil and problems associated with surprises. Of course this does not eliminate surprises termed “black swans” but these tools do significantly reduce most risks.
  • Resilience. Infrastructure is the backbone of our economy, connecting people, enhancing quality of life, and promoting health and safety. But climate change is revealing infrastructure vulnerabilities (Will infrastructure bend or break under climate change?, 2020). Like risks, resiliency or the lack of it, has always existed. As our built environment has increased, come into conflict with, and impacted the natural environment, the demand for protecting the built environment has increased. The National Oceanographic and Atmospheric Administration (NOAA) (Lindsey, 2020) estimates a sea level rise of one foot to 8.2 feet by 2100. The variables are such that it is impossible to project more precisely. These apparently man-induced climate changes have increased hurricanes, other storms, coastal erosion, flooding, and other events that erode or destroy man-made structures including roads and bridges. This has demanded more resilient infrastructure through better materials, protective structures, relocation to less exposed areas, improved construction practices, and others (Parsons, 2020). One of the more recent efforts to improve the built-natural environment coexistence is the U. S. Army Corps of Engineers initiative “Engineering with Nature” (https://ewn.el.erdc.dren.mil/).
  • Environment. This discipline, like other disciplines, interacts together. As living beings, we depend on and are part of the natural environment. Thus, while risk and resilience are critical to the built environment, the healthy functioning of the natural environment is essential to our well-being. There is general recognition that climate change, biological diversity, populations, species loss and other insidious environmental impacts are undermining the natural world on which life (including humans) depends. (Will infrastructure bend or break under climate change?, 2020; UN Report: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’, 2019; Bongaarts, 2019; Duckett, 2020; Sofia, et al, 2020; Kann, 2020). There are emerging lab cultured meats that may reduce greenhouse gases 20-30 percent, slaughtering of 80 billion animals a year, improve land use, and reduce creation and transmission of diseases such as coronavirus. In the end we must take care of our natural environment. There is an increasing demand for the transportation/mobility space to not only mitigate but improve the natural environment. While many techniques are not new, the U. S. Army Corps of Engineers initiative “Engineering with Nature” increases the attention to the importance and techniques to live well within and take care of the natural environment.
  • Internet of Things (IoT). This is technology taken to a high level. There is increasing demand for seamless mobility and IoT provides tools to achieve that future. As the title of this blog infers (The Mobility Ecosystem), the IoT allows an increasing emphasis on a “systems perspective” of our lives. Technology is allowing us to not only see the mobility ecosystem more clearly but how to improve its performance in all of its myriad impacts and relations…economic, social, environmental etc. (Joshi, 2020).

Some Smart City Concepts

  • Incentivize High Density Development. Our society has seen in an ebb and flow in regards to this concept—rural agriculture migrating to cities during industrialization, migrations to suburbs during metropolitan growth, migrations to more rural areas with increased opportunities for remote work, and a return to metropolitan areas primarily for work. This latter has dramatically increased traffic congestion and no one likes that. So, metropolitan areas are employing solutions to address this issue, such as providing incentives for high density development, not only of businesses, but housing and support services such as health care and  grocery stores that are within walking distance. Due to population densities in European and Asian metropolitan areas, high density development has been occurring for some time. The United States is a much younger country so, we can learn from looking at their experience.
  • Incentivize Core Downtown Development by Charging Fees for Increases in Traffic. This is more of a technique than a concept. Nonetheless, charging fees for development that results in traffic increases can be a powerful tool while developing downtown areas, reducing traffic congestion, and increasing pedestrian/bicycle/scooter traffic.
  • Electrify Transportation: While electrification is a discipline, its application to traffic is considerable and is rapidly occurring. The economics driving this are discussed in a later post in this series.
  • Use More Shared and Connected Transportation. While shared transportation providers such as Uber and Lyft are becoming increasingly ubiquitous and used by many, especially millennials, there is little question that these and other providers will continue to expand. Connected transportation is beginning to emerge essentially in two forms. One is connecting various modes into one seamless multimodal transportation system, largely through technology. The other is by linking buses, trucks and cars into essentially “trains of vehicles or platoons” with little or no separation (i.e. virtually or physically connected). This has the net effect of increasing the capacity of infrastructure and increasing the productivity (and safety) of vehicles.
  • Use Traffic Calming Devices that Slow Cars and Enhance Pedestrian, Bicycle, Scooter, and Transit Mobility. This is likely one of the less obvious smart city concepts. However, the use of traditional traffic lights, traffic circles, pavement markings, and signs can have the net impact of slowing cars and enhancing pedestrian, bicycle, scooter and transit mobility.
  • Adopt User-Friendly App(s) for Routing and Paying for Multimodal Trips. This may be more of a technique for increasing connected vehicle use by a user-friendly app that allows for routing and paying for multimodal trips. These are being developed in locations such as the Denver RTD.
  • Free Public Transportation. As population densities increase and the impacts are valued and assessed via more “systems thinking,” the results may be that free public transportation may be more advantageous and cost-effective than alternatives. Dunkirk France concluded that free public transportation was more advantageous and cost effective than other alternatives, and thus provide free public transportation. Kansas City, Missouri, is providing free public transportation in a one year test to determine whether to do the same.
  • Stay Healthy Streets. Making more use of streets has gone by various names including complete streets, but Stay Healthy Streets is a more recent terminology. Essentially, this concept increases the usage of roads from motorized vehicles to pedestrians, bicycles, and other micro-mobility. This can be accomplished by closing or limiting streets to vehicle access, pavement markings for bicycle lanes, etc. The cities of Seattle and Minneapolis saw increases in pedestrian and bicycle traffic during the COVID-19 Pandemic while other cities saw little or no change. The question now is whether to keep these Stay Healthy Streets or not.

The fDis Global cities of the future (fDiintelligence.com, a service of the Financial Times LTD) also offers a variety of great insights, including by competitions to identify the best practices for future global cities.

Smart Rural Concepts

In an effort to be holistic, it is appropriate to provide some discussion of Smart Rural Concepts. The needs in largely agriculture-based communities for access to hospitals, schools, jobs and other communities is equal to that of more urban communities although the challenges may vary, including longer travel distances. Nearly every element in the above discussion of Smart Cities also relate to rural areas, the need for strategic planning, clean energy, electrification, big data, resilience, 5G, ITS, variable message signs, CAV, GPS, IoT, user-friendly apps for routing, etc. One exception is that most rural communities are not burdened with traffic congestion in their downtowns so incentivizing high-density development downtown makes little sense. However, many rural communities strongly desire more downtown traffic as a perceived means of economic development. Traffic can be a two-edged sword depending on your perspective. Truck traffic routing is another area rural communities may struggle with more than more urban communities.

One of the more challenging aspects of rural areas is that 45 percent of the nation’s fatalities are on rural roads while only 19 percent of the nation’s population lives in rural areas (Rural/Urban Comparison of Traffic Fatalities, 2020). This warrants counter measures not usually used in more urban areas. With more than 30 people a day dying in roadway departure crashes on rural roads, inexpensive countermeasures like SafetyEdge, rumble strips, lane markings, signage, and edge lines can and are bringing that number down.

Literature Cited

Begley, Dug (2020, December 16). Houston has a plan to end road fatalities. Now the work to implement it begins. Houston Chronicle. Retrieved January 14, 2021, from https://www.houstonchronicle.com/news/houston-texas/transportation/article/Houston-has-a-plan-to-end-road-fatalities-Now-15809563.php

Bongaarts, J. (2019, September 4). IPBES, 2019. Summary for policy makers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Wiley Online Library. Retrieved January 14, 2021 from https://onlinelibrary.wiley.com/doi/full/10.1111/padr.12283

Duckett, M.K. (2020, March 4). Nature needs us to act – now. National Geographic. Retrieved January 14 from https://www.nationalgeographic.com/science/2020/03/partner-content-nature-needs-us-to-act-now/

Eschner, K. (2017, September 13). Henry Bliss, America’s First Pedestrian Fatality, Was Hit By an Electric Taxi. Smithsonian Magazine. Retrieved January 18, 2021, from https://www.smithsonianmag.com/smart-news/henry-bliss-americas-first-pedestrian-fatality-was-hit-electric-taxi-180964852/

Fixing America’s Surface Transportation or “FAST Act.” (2015, December 4). U.S. Department of Transportation. Retrieved January 14, 2021 from https://www.transportation.gov/fastact

Joshi, N. (2020, December 16). How IoT Can Enhance Public Transportation. BBN Times. Retrieved January 14, 2021 from https://www.bbntimes.com/technology/how-iot-can-enhance-public-transportation

Kann, D. (2020, December 3). Salmon have been dying mysteriously on the West Coast for years. Scientists think a chemical in tires may be responsible. CNN. Retrieved January 14, 2021 from https://www.cnn.com/2020/12/03/us/microplastics-tire-rubber-chemicals-killing-coho-salmon-scn/index.html

Lindsey, R. (2020, August 14). Climate Change: Global Sea Level. NOAA. Retrieved January 14, 2021 from https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level

Parsons, J. (2020, December 16). Shoring Up for Rising Sea Levels. Engineering News-Record. Retrieved January 18, 2021 from https://www.enr.com/articles/50899-shoring-up-for-rising-sea-levels

Regional transportation study suggests ‘micro-transit’. (2020, December 11). Mid Hudson News. Retrieved January 14, 2021 from https://midhudsonnews.com/2020/12/11/regional-transportation-study-suggests-micro-transit/

Road Traffic Injuries and Deaths—A Global Problem. (n.d.) Center for Disease Control and Prevention. Retrieved January 14, 2021 from https://www.cdc.gov/injury/features/global-road-safety/index.html

Rural/Urban Comparison of Traffic Fatalities. (2020, May). NHTSA Traffic Safety Facts 2018 Data. Retrieved January 14, 2021 from https://ruralsafetycenter.org/wp-content/uploads/2020/06/812957.pdf

Sofia, G., E.I. Nikolopoulos, L. Slater. (2020, March 16). It’s Time to Revise Estimates of River Flood Hazards. Eos. Retrieved January 14, 2021 from https://eos.org/opinions/its-time-to-revise-estimates-of-river-flood-hazards

UN Report: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rate ‘Accelerating.’ (2019, May 6). United Nations. Retrieved January 14, 2021 from https://www.un.org/sustainabledevelopment/blog/2019/05/nature-decline-unprecedented-report/

Will infrastructure bend or break under climate stress? (2020, June). McKinsey Global Institute. Retrieved January 18, 2021 from https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability/Our%20Insights/Will%20infrastructure%20bend%20or%20break%20under%20climate%20stress/Will-infrastructure-bend-or-break-under-climate-stress_case-study.pdf

The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 1: Introduction, Setting the Stage, The Future of Transportation)

18 Monday Jan 2021

Posted by John L. Craig in Biomimicry, Economy, Environment, Future, Internet of Things or IoT, Mobility Ecosystem, Multimodal, Society, Technology, Transportation

≈ Leave a comment

“The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.” 

― Albert Einstein

Introduction

This is the first in a series of blog posts on The Mobility Ecosystem: the changing landscape and need for fresh new ideas.

There is no one in our society who does not depend on and is impacted by mobility in its various forms. Moreover, mobility, its near-synonym transportation, and their associated agencies are increasingly responsible for helping to resolve an expanding number of issues—economic, societal, environmental, etc. While some are at the margin, others are at the core.

This narrative interweaves the perspectives and insights of multiple disciplines—engineering, economics, technology, natural, environmental and climate sciences, analytics, equity, anthropology, sociology, psychology, political science, business, philosophy, and history—and borrows from entire bodies of scholarship and discussions that I have sought to learn from, synthesize and build upon.

The primary reason for the title “The Mobility Ecosystem” is biomimicry, which is defined as the design and production of materials, structures, and systems that are modeled on biological entities and processes. The imitation of natural biological designs or processes in engineering or invention is not new. It has existed for thousands of years and has inspired airplanes from birds flying and roads from animal trails. Recently, Netherlands-based architecture firm GG-Loop along with engineering company Arup is developing ‘Mitosis’, a modular building system created by a parametric design tool following biophilic and user-centric design principles inspired by nature (Netherlands-based firm brings biophilic regenerative architecture to urban developments, 2020). The human society development has been largely inspired or driven by the natural world. We are continuing to learn from nature in creating and saving our world from human impacts.

A more thorough review of the increasingly rich, diverse mobility literature with citations, bibliography, notes, or epigraphs is beyond the scope of this blog and is intended for a longer future article.

Mobility is emerging as a human right, literally and figuratively, and an inherent part of freedom. Governments, city builders, and communities are faced with seemingly limitless possibilities which can be both liberating and paralyzing at times—a virtual smorgasbord.

Setting the Stage

There is general recognition that mobility, broadband, and cloud services are the 21st Century infrastructure. Infrastructure development (physical and digital) is a catalyst for economic development and jobs. There is a universal dislike of traffic congestion, fuels and technologies are changing, and personal vehicle ownership has begun to decline. These trends and others are part of what is emerging as transportation or mobility as a service, are changing our world, and collectively incorporate many of the aspects of this blog series.

It is impossible to identify a point in time when technology began to emerge. It pretty well parallels the evolution of humankind. While the real shift to digital technology began with the launch of the first personal computers in the 1970s, the fielding of the first Apple iPhone in 2007 was a dramatic advance in technology. With that event, the rate of change and demand for collaboration and technology increasingly accelerated, act synergistically, and offer the potential to improve safety, the economy, the environment, society, and people’s lives.

The Future of Transportation

The future of transportation may be reflected in the incoming Biden-Harris Administration priorities of defeating the COVID-19 Pandemic, economic recovery, racial equality, and climate change. Within those priorities are some likely Biden-Harris Administration transportation priorities as reflected by John Porcari, former Deputy Secretary of Transportation and member of the Biden-Harris Administration Transition Team.

  1. Safety
  2. Technology
  3. Climate Change
  4. Resilience
  5. Transit and passenger rail

Trends and issues on the horizon involve revisionist urban systems and identifying tangible, integrated solutions that exceed the status quo’s diminishing returns. The ability to envision and improve communities, public spaces, networks, and services is critical to influencing the path ahead.

FIGURE 1. A safe, seamless multimodal transportation or mobility system.

What’s needed? A truly safe, seamless, multimodal 21st century transportation system for the movement of people and goods (Figure 1).  The future is exciting, limitless, and rapidly changing. These are tenants for the mobility ecosystem.

  1. Safety: reduce crashes, fatalities, injuries, and property damage
  2. Mobility: reduce congestion, increase the capacity of existing infrastructure; connected and intermodal=one seamless transportation system
  3. Economy: improve access to jobs, products and services, origin, destination, transport
  4. Society: mobility is emerging as a human right; equity, social justice, equality, mobility for the under served
  5. Environment: environmental justice for all is emerging as a human right; improve air, land, and water
  6. Costs: reduce overall costs
  7. Time: reduce travel time
  8. Support: leverage advancing technologies, business intelligence/analysis, data, and decision-making systems

The above eight tenants and the contents of this blog do not supplant the process of good, sound planning, project development, design, construction, operations, and maintenance. At least until there is a better way, these tenants also do not supplant many other important elements such as a strong safety culture and program, annual needs assessment of infrastructure condition and their associated scope and cost, preserving the existing system, utilization of asset management tools, and monitoring and managing traffic speed and volume. It is the utility of all tools that will optimize outcomes in creating a better world for us and our posterity.

Literature Cited

Netherlands-based firm brings biophilic regenerative architecture to urban developments. (2020, November 16). Construction Canada. https://www.constructioncanada.net/netherlands-based-firm-brings-biophilic-regenerative-architecture-to-urban-developments/

Recent Posts

  • Program and Project Management: Three Questions
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 13: Reimagining the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 12: A Look into the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 11: Leadership and Education)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 10: Social, Economic, and Environmental Issues)

Recent Comments

jseprogrammanagement on Program and Project Management…

Archives

  • October 2022
  • June 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • 3D Printers
  • 5.9 GHz
  • 5G
  • Alternative Delivery
  • Artificial Intelligence (AI)
  • Asset & Life Cycle Management
  • Augmented Reality (AR)
  • Autonomous Vehicles
  • Batteries
  • Benefit-Cost or BC
  • Biological Diversity
  • Biomimicry
  • Black Swans
  • Business Transformation
  • Clean Energy
  • Climate
  • Cloud Services
  • Collaboration
  • Communications
  • Connected and Autonomous Vehicles (CAV)
  • Construction
  • COVID-19
  • Cyber-security
  • Design
  • Drones
  • Dynamic Transportation Management
  • Economics
  • Economy
  • Education
  • Electric Vehicles
  • Environment
  • Extinction of Species
  • Fuel Taxes
  • Funding
  • Funding Gaps
  • Future
  • Gas-Fueled Vehicles
  • Global Positioning Systems (GPS)
  • Government & Policy
  • History
  • Homo sapiens
  • Infrastructure
  • Intelligent Infrastructure
  • Intelligent Transportation Systems or ITS
  • Internet of Things or IoT
  • Interstate
  • Investing
  • Leadership
  • Learning and Success
  • Lidar
  • Machine Control
  • Maintenance
  • Management
  • Materials
  • Mobility
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Multimodal Needs Assessment
  • Needs Assessments
  • Oil
  • Operations
  • Owner
  • Pandemic
  • Partnerships and Collaboration
  • Pedestrians
  • Performance Measurement and Management
  • Planning
  • Program Management
  • Program or Project Controls
  • Project Management
  • Recycling
  • Relationships
  • Resilience
  • Results
  • Return on Investment or ROI
  • Ride Sharing
  • Risks
  • Robotics
  • Rural
  • Safety
  • Scope, Schedule, Budget
  • Smart Cities
  • Social Justice and Equity
  • Society
  • Solar
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust
  • Urban
  • Utilities
  • Vehicle Miles Traveled Tax (VMT)
  • Vehicle-to-Everything (V2X)
  • Vehicle-to-Infrastructure (V2I)
  • Vehicle-to-Vehicle (V2V)
  • Virtual Reality (VR)

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Recent Posts

  • Program and Project Management: Three Questions
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 13: Reimagining the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 12: A Look into the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 11: Leadership and Education)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 10: Social, Economic, and Environmental Issues)

Recent Comments

jseprogrammanagement on Program and Project Management…

Archives

  • October 2022
  • June 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • 3D Printers
  • 5.9 GHz
  • 5G
  • Alternative Delivery
  • Artificial Intelligence (AI)
  • Asset & Life Cycle Management
  • Augmented Reality (AR)
  • Autonomous Vehicles
  • Batteries
  • Benefit-Cost or BC
  • Biological Diversity
  • Biomimicry
  • Black Swans
  • Business Transformation
  • Clean Energy
  • Climate
  • Cloud Services
  • Collaboration
  • Communications
  • Connected and Autonomous Vehicles (CAV)
  • Construction
  • COVID-19
  • Cyber-security
  • Design
  • Drones
  • Dynamic Transportation Management
  • Economics
  • Economy
  • Education
  • Electric Vehicles
  • Environment
  • Extinction of Species
  • Fuel Taxes
  • Funding
  • Funding Gaps
  • Future
  • Gas-Fueled Vehicles
  • Global Positioning Systems (GPS)
  • Government & Policy
  • History
  • Homo sapiens
  • Infrastructure
  • Intelligent Infrastructure
  • Intelligent Transportation Systems or ITS
  • Internet of Things or IoT
  • Interstate
  • Investing
  • Leadership
  • Learning and Success
  • Lidar
  • Machine Control
  • Maintenance
  • Management
  • Materials
  • Mobility
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Multimodal Needs Assessment
  • Needs Assessments
  • Oil
  • Operations
  • Owner
  • Pandemic
  • Partnerships and Collaboration
  • Pedestrians
  • Performance Measurement and Management
  • Planning
  • Program Management
  • Program or Project Controls
  • Project Management
  • Recycling
  • Relationships
  • Resilience
  • Results
  • Return on Investment or ROI
  • Ride Sharing
  • Risks
  • Robotics
  • Rural
  • Safety
  • Scope, Schedule, Budget
  • Smart Cities
  • Social Justice and Equity
  • Society
  • Solar
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust
  • Urban
  • Utilities
  • Vehicle Miles Traveled Tax (VMT)
  • Vehicle-to-Everything (V2X)
  • Vehicle-to-Infrastructure (V2I)
  • Vehicle-to-Vehicle (V2V)
  • Virtual Reality (VR)

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Recent Posts

  • Program and Project Management: Three Questions
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 13: Reimagining the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 12: A Look into the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 11: Leadership and Education)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 10: Social, Economic, and Environmental Issues)

Recent Comments

jseprogrammanagement on Program and Project Management…

Archives

  • October 2022
  • June 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • 3D Printers
  • 5.9 GHz
  • 5G
  • Alternative Delivery
  • Artificial Intelligence (AI)
  • Asset & Life Cycle Management
  • Augmented Reality (AR)
  • Autonomous Vehicles
  • Batteries
  • Benefit-Cost or BC
  • Biological Diversity
  • Biomimicry
  • Black Swans
  • Business Transformation
  • Clean Energy
  • Climate
  • Cloud Services
  • Collaboration
  • Communications
  • Connected and Autonomous Vehicles (CAV)
  • Construction
  • COVID-19
  • Cyber-security
  • Design
  • Drones
  • Dynamic Transportation Management
  • Economics
  • Economy
  • Education
  • Electric Vehicles
  • Environment
  • Extinction of Species
  • Fuel Taxes
  • Funding
  • Funding Gaps
  • Future
  • Gas-Fueled Vehicles
  • Global Positioning Systems (GPS)
  • Government & Policy
  • History
  • Homo sapiens
  • Infrastructure
  • Intelligent Infrastructure
  • Intelligent Transportation Systems or ITS
  • Internet of Things or IoT
  • Interstate
  • Investing
  • Leadership
  • Learning and Success
  • Lidar
  • Machine Control
  • Maintenance
  • Management
  • Materials
  • Mobility
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Multimodal Needs Assessment
  • Needs Assessments
  • Oil
  • Operations
  • Owner
  • Pandemic
  • Partnerships and Collaboration
  • Pedestrians
  • Performance Measurement and Management
  • Planning
  • Program Management
  • Program or Project Controls
  • Project Management
  • Recycling
  • Relationships
  • Resilience
  • Results
  • Return on Investment or ROI
  • Ride Sharing
  • Risks
  • Robotics
  • Rural
  • Safety
  • Scope, Schedule, Budget
  • Smart Cities
  • Social Justice and Equity
  • Society
  • Solar
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust
  • Urban
  • Utilities
  • Vehicle Miles Traveled Tax (VMT)
  • Vehicle-to-Everything (V2X)
  • Vehicle-to-Infrastructure (V2I)
  • Vehicle-to-Vehicle (V2V)
  • Virtual Reality (VR)

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Recent Posts

  • Program and Project Management: Three Questions
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 13: Reimagining the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 12: A Look into the Future)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 11: Leadership and Education)
  • The Mobility Ecosystem: the changing landscape and the need for fresh, new ideas (Part 10: Social, Economic, and Environmental Issues)

Recent Comments

jseprogrammanagement on Program and Project Management…

Archives

  • October 2022
  • June 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • May 2019
  • April 2019
  • December 2018
  • October 2017
  • September 2016
  • March 2016
  • February 2016
  • January 2016
  • September 2015

Categories

  • 3D Printers
  • 5.9 GHz
  • 5G
  • Alternative Delivery
  • Artificial Intelligence (AI)
  • Asset & Life Cycle Management
  • Augmented Reality (AR)
  • Autonomous Vehicles
  • Batteries
  • Benefit-Cost or BC
  • Biological Diversity
  • Biomimicry
  • Black Swans
  • Business Transformation
  • Clean Energy
  • Climate
  • Cloud Services
  • Collaboration
  • Communications
  • Connected and Autonomous Vehicles (CAV)
  • Construction
  • COVID-19
  • Cyber-security
  • Design
  • Drones
  • Dynamic Transportation Management
  • Economics
  • Economy
  • Education
  • Electric Vehicles
  • Environment
  • Extinction of Species
  • Fuel Taxes
  • Funding
  • Funding Gaps
  • Future
  • Gas-Fueled Vehicles
  • Global Positioning Systems (GPS)
  • Government & Policy
  • History
  • Homo sapiens
  • Infrastructure
  • Intelligent Infrastructure
  • Intelligent Transportation Systems or ITS
  • Internet of Things or IoT
  • Interstate
  • Investing
  • Leadership
  • Learning and Success
  • Lidar
  • Machine Control
  • Maintenance
  • Management
  • Materials
  • Mobility
  • Mobility as a Service
  • Mobility Ecosystem
  • Multimodal
  • Multimodal Needs Assessment
  • Needs Assessments
  • Oil
  • Operations
  • Owner
  • Pandemic
  • Partnerships and Collaboration
  • Pedestrians
  • Performance Measurement and Management
  • Planning
  • Program Management
  • Program or Project Controls
  • Project Management
  • Recycling
  • Relationships
  • Resilience
  • Results
  • Return on Investment or ROI
  • Ride Sharing
  • Risks
  • Robotics
  • Rural
  • Safety
  • Scope, Schedule, Budget
  • Smart Cities
  • Social Justice and Equity
  • Society
  • Solar
  • Strategic Planning
  • Sustainability
  • Team-Building
  • Technology
  • Transportation
  • Trust
  • Urban
  • Utilities
  • Vehicle Miles Traveled Tax (VMT)
  • Vehicle-to-Everything (V2X)
  • Vehicle-to-Infrastructure (V2I)
  • Vehicle-to-Vehicle (V2V)
  • Virtual Reality (VR)

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Blog at WordPress.com.

  • Follow Following
    • Leadership in Transportation
    • Already have a WordPress.com account? Log in now.
    • Leadership in Transportation
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...