Safety
There is likely not a transportation agency or company that does not consider safety as their number one priority. This is how it should be. The very first roadway powered vehicle fatality in the United States was on September 13, 1899, when Henry Hale Bliss, a 69-year-old local real estate dealer, was dismounting a southbound 8th Avenue trolley car in New York City when an electric-powered taxi cab struck him. Bliss hit the pavement, crushing his head and chest. Bliss died from his sustained injuries the next morning (Eschner, 2017). A plaque was dedicated at the site on September 13, 1999, to commemorate the centenary of this event. It reads:
Here at West 74th Street and Central Park West, Henry H. Bliss dismounted from a streetcar and was struck and knocked unconscious by an automobile on the evening of September 13, 1899. When Mr. Bliss, a New York real estate man, died the next morning from his injuries, he became the first recorded motor vehicle fatality in the Western Hemisphere. This sign was erected to remember Mr. Bliss on the centennial of his untimely death and to promote safety on our streets and highways.
Since then, it has been a continual challenge to reduce fatalities, injuries, and property damage. Entire industries have grown up during this time (insurance, roadway policing, etc.).
More recently, while technology and autonomous vehicles hold promise to reduce and perhaps eliminate crashes, it will be many years and probably decades before a significant impact occurs. The United States alone averages 30-40,000 roadway deaths a year. Globally there are 1.35 million people annually killed on roadways around the world (3,700/day) with a $1.8 trillion economic cost in 2010 U. S. dollars (Road Traffic Injuries and Deaths—A Global Problem, n.d.). In the meantime, efforts must continue to protect people. Within the past decade, many in the industry have set goals for zero fatalities. As an example, one of these is Houston’s Vision Zero Action Plan (Begley, 2020). The city’s plan identifies 13 “priority actions” the city is committing to take. Among them:
- construct at least 50 miles of sidewalks annually
- build at least 25 miles of dedicated bike lanes annually
- evaluate road projects for options to include sidewalks, bike trails and other amenities
- redesign 10 locations with high numbers of incidents every two years, and make those changes within the following calendar year
Additionally, the plan calls on the city to train its employees on how to talk about crashes to avoid victim-blaming or playing down safety issues. It also calls for a detailed analysis of Vision Zero’s progress to be made publicly available.
These are not particularly unique actions to improve safety, as professionals work every day—through planning, design, construction, operations, maintenance, education, and collaboration—to reduce, if not eliminate, crashes and the circumstances that lead to them in an effort to keep people safe. However, “action” is the operative word just as Houston is doing.
Smart Cities and Concepts
Advances in policy, planning, partnerships, and innovation are being developed at all governmental levels in an effort to provide a framework for the public and private sectors to work in unison within an architecture to increase effective and efficient mobility. An early example of this is the Intelligent Transportation System or ITS Architecture developed by the U. S. Department of Transportation in conjunction with many partners and issued in 2001.
There are a number of concepts that can and have been referred to as “Smart Cities” or “Smart City Concepts”. These have evolved especially during the technology revolution of the past two decades. This list is far from exhausting the myriad concepts or disciplines. The following discusses some of these disciplines and concepts, in no particular order, and none fit neatly within one topic.
Some disciplines in these concepts:
- Strategic Planning. This is the starting point for virtually everything else. It is, of course, preceded by the necessary outreach, listening, team building, and collaboration needed to build a strategy.
- Performance Metrics. Tracking progress toward meeting the goals imbedded within the strategic plan is equally important. Any plan becomes useless without progress toward obtaining it and performance metrics provide that tool to measure progress.
- Connected and Automated Vehicles (CAV). Driven by rapidly developing technologies, CAV primarily provides more capacity from infrastructure, essentially reducing costs and improving safety.
- Clean Energy—Maturing Alternative Fuel Technologies. The Industrial Age and resulting pollution and climate change that resulted have demanded clean energy in all its forms—solar, wind, hydrogen fuel cell, and electricity. Electricity is currently most dominant.
- Electrification. As electricity emerges as the clean energy fuel, vehicle manufactures and governments are rapidly moving forward to increase electric vehicle use and reduce carbon-based vehicle use. The Governor of California has mandated no new internal combustion vehicle sales within California after 2035 while electric vehicle use continues to rise, and many states and communities are encouraging their use with supporting infrastructure. California has led many areas in the mobility space so this is one to watch.
- Hydrogen Fuel Cells. Recently, the diesel engine manufacturer Cummins is developing hydrogen fuel cell engines that they believe will be efficient and compete favorably with electricity for heavy vehicles such as buses, heavy trucks, and trains.
- Mobility as a Service/Mobility on Demand. Mobility as a Service, or MaaS, also known as Transportation as a Service, provides services typically with a joint digital channel that enables users to plan, book, and pay for trips. This is part of a more global shift from personally-owned vehicles to mobility provided as a service. Micro-mobility and micro-transit are also emerging (Regional transportation study suggests ‘’micro-transit’, 2020).
- Car and Ride Sharing. Car and ride sharing has been around for decades, but the technology of recent years has allowed it to become much more effective and efficient as evidenced by the rise of Lyft and Uber.
- Increasing Biking, Scooters, and Pedestrian Mobility. In recent years as a means to reduce car usage especially in metropolitan areas, bike lanes, trails, sidewalks, and scooter/bicycle rentals are increasing. These have the ability to also improve health while reducing congestion and increasing the capacity of infrastructure.
- Big Data. This is the best of continuous improvement. Virtually every organization has legacy systems of data, physical (e.g. file cabinets) or electronic (e.g. servers or the cloud). For a variety of reasons, these data have resided in ”silos” and are not easily accessed and analyzed from broader, more complex perspectives. New technologies and related tools are now allowing “big data” to be accessed and analyzed with resulting increases in efficiency and performance.
- Risk. Risk has always existed and is dominant in mega and giga projects as evidenced in projects such as the California High Speed Rail. While private companies have had risk management programs for years, the most recent federal transportation act (Fixing America’s Surface Transportation or “FAST Act,” 2015) requires states to have a risk management program. Using different tools to anticipate potential challenges (e.g. lost revenues) as well as opportunities (e.g. lost opportunities to increase revenues), these tools allow proactive development of strategies to mitigate and address the challenges as they occur vice the turmoil and problems associated with surprises. Of course this does not eliminate surprises termed “black swans” but these tools do significantly reduce most risks.
- Resilience. Infrastructure is the backbone of our economy, connecting people, enhancing quality of life, and promoting health and safety. But climate change is revealing infrastructure vulnerabilities (Will infrastructure bend or break under climate change?, 2020). Like risks, resiliency or the lack of it, has always existed. As our built environment has increased, come into conflict with, and impacted the natural environment, the demand for protecting the built environment has increased. The National Oceanographic and Atmospheric Administration (NOAA) (Lindsey, 2020) estimates a sea level rise of one foot to 8.2 feet by 2100. The variables are such that it is impossible to project more precisely. These apparently man-induced climate changes have increased hurricanes, other storms, coastal erosion, flooding, and other events that erode or destroy man-made structures including roads and bridges. This has demanded more resilient infrastructure through better materials, protective structures, relocation to less exposed areas, improved construction practices, and others (Parsons, 2020). One of the more recent efforts to improve the built-natural environment coexistence is the U. S. Army Corps of Engineers initiative “Engineering with Nature” (https://ewn.el.erdc.dren.mil/).
- Environment. This discipline, like other disciplines, interacts together. As living beings, we depend on and are part of the natural environment. Thus, while risk and resilience are critical to the built environment, the healthy functioning of the natural environment is essential to our well-being. There is general recognition that climate change, biological diversity, populations, species loss and other insidious environmental impacts are undermining the natural world on which life (including humans) depends. (Will infrastructure bend or break under climate change?, 2020; UN Report: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rates ‘Accelerating’, 2019; Bongaarts, 2019; Duckett, 2020; Sofia, et al, 2020; Kann, 2020). There are emerging lab cultured meats that may reduce greenhouse gases 20-30 percent, slaughtering of 80 billion animals a year, improve land use, and reduce creation and transmission of diseases such as coronavirus. In the end we must take care of our natural environment. There is an increasing demand for the transportation/mobility space to not only mitigate but improve the natural environment. While many techniques are not new, the U. S. Army Corps of Engineers initiative “Engineering with Nature” increases the attention to the importance and techniques to live well within and take care of the natural environment.
- Internet of Things (IoT). This is technology taken to a high level. There is increasing demand for seamless mobility and IoT provides tools to achieve that future. As the title of this blog infers (The Mobility Ecosystem), the IoT allows an increasing emphasis on a “systems perspective” of our lives. Technology is allowing us to not only see the mobility ecosystem more clearly but how to improve its performance in all of its myriad impacts and relations…economic, social, environmental etc. (Joshi, 2020).
Some Smart City Concepts
- Incentivize High Density Development. Our society has seen in an ebb and flow in regards to this concept—rural agriculture migrating to cities during industrialization, migrations to suburbs during metropolitan growth, migrations to more rural areas with increased opportunities for remote work, and a return to metropolitan areas primarily for work. This latter has dramatically increased traffic congestion and no one likes that. So, metropolitan areas are employing solutions to address this issue, such as providing incentives for high density development, not only of businesses, but housing and support services such as health care and grocery stores that are within walking distance. Due to population densities in European and Asian metropolitan areas, high density development has been occurring for some time. The United States is a much younger country so, we can learn from looking at their experience.
- Incentivize Core Downtown Development by Charging Fees for Increases in Traffic. This is more of a technique than a concept. Nonetheless, charging fees for development that results in traffic increases can be a powerful tool while developing downtown areas, reducing traffic congestion, and increasing pedestrian/bicycle/scooter traffic.
- Electrify Transportation: While electrification is a discipline, its application to traffic is considerable and is rapidly occurring. The economics driving this are discussed in a later post in this series.
- Use More Shared and Connected Transportation. While shared transportation providers such as Uber and Lyft are becoming increasingly ubiquitous and used by many, especially millennials, there is little question that these and other providers will continue to expand. Connected transportation is beginning to emerge essentially in two forms. One is connecting various modes into one seamless multimodal transportation system, largely through technology. The other is by linking buses, trucks and cars into essentially “trains of vehicles or platoons” with little or no separation (i.e. virtually or physically connected). This has the net effect of increasing the capacity of infrastructure and increasing the productivity (and safety) of vehicles.
- Use Traffic Calming Devices that Slow Cars and Enhance Pedestrian, Bicycle, Scooter, and Transit Mobility. This is likely one of the less obvious smart city concepts. However, the use of traditional traffic lights, traffic circles, pavement markings, and signs can have the net impact of slowing cars and enhancing pedestrian, bicycle, scooter and transit mobility.
- Adopt User-Friendly App(s) for Routing and Paying for Multimodal Trips. This may be more of a technique for increasing connected vehicle use by a user-friendly app that allows for routing and paying for multimodal trips. These are being developed in locations such as the Denver RTD.
- Free Public Transportation. As population densities increase and the impacts are valued and assessed via more “systems thinking,” the results may be that free public transportation may be more advantageous and cost-effective than alternatives. Dunkirk France concluded that free public transportation was more advantageous and cost effective than other alternatives, and thus provide free public transportation. Kansas City, Missouri, is providing free public transportation in a one year test to determine whether to do the same.
- Stay Healthy Streets. Making more use of streets has gone by various names including complete streets, but Stay Healthy Streets is a more recent terminology. Essentially, this concept increases the usage of roads from motorized vehicles to pedestrians, bicycles, and other micro-mobility. This can be accomplished by closing or limiting streets to vehicle access, pavement markings for bicycle lanes, etc. The cities of Seattle and Minneapolis saw increases in pedestrian and bicycle traffic during the COVID-19 Pandemic while other cities saw little or no change. The question now is whether to keep these Stay Healthy Streets or not.
The fDis Global cities of the future (fDiintelligence.com, a service of the Financial Times LTD) also offers a variety of great insights, including by competitions to identify the best practices for future global cities.
Smart Rural Concepts
In an effort to be holistic, it is appropriate to provide some discussion of Smart Rural Concepts. The needs in largely agriculture-based communities for access to hospitals, schools, jobs and other communities is equal to that of more urban communities although the challenges may vary, including longer travel distances. Nearly every element in the above discussion of Smart Cities also relate to rural areas, the need for strategic planning, clean energy, electrification, big data, resilience, 5G, ITS, variable message signs, CAV, GPS, IoT, user-friendly apps for routing, etc. One exception is that most rural communities are not burdened with traffic congestion in their downtowns so incentivizing high-density development downtown makes little sense. However, many rural communities strongly desire more downtown traffic as a perceived means of economic development. Traffic can be a two-edged sword depending on your perspective. Truck traffic routing is another area rural communities may struggle with more than more urban communities.
One of the more challenging aspects of rural areas is that 45 percent of the nation’s fatalities are on rural roads while only 19 percent of the nation’s population lives in rural areas (Rural/Urban Comparison of Traffic Fatalities, 2020). This warrants counter measures not usually used in more urban areas. With more than 30 people a day dying in roadway departure crashes on rural roads, inexpensive countermeasures like SafetyEdge, rumble strips, lane markings, signage, and edge lines can and are bringing that number down.
Literature Cited
Begley, Dug (2020, December 16). Houston has a plan to end road fatalities. Now the work to implement it begins. Houston Chronicle. Retrieved January 14, 2021, from https://www.houstonchronicle.com/news/houston-texas/transportation/article/Houston-has-a-plan-to-end-road-fatalities-Now-15809563.php
Bongaarts, J. (2019, September 4). IPBES, 2019. Summary for policy makers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Wiley Online Library. Retrieved January 14, 2021 from https://onlinelibrary.wiley.com/doi/full/10.1111/padr.12283
Duckett, M.K. (2020, March 4). Nature needs us to act – now. National Geographic. Retrieved January 14 from https://www.nationalgeographic.com/science/2020/03/partner-content-nature-needs-us-to-act-now/
Eschner, K. (2017, September 13). Henry Bliss, America’s First Pedestrian Fatality, Was Hit By an Electric Taxi. Smithsonian Magazine. Retrieved January 18, 2021, from https://www.smithsonianmag.com/smart-news/henry-bliss-americas-first-pedestrian-fatality-was-hit-electric-taxi-180964852/
Fixing America’s Surface Transportation or “FAST Act.” (2015, December 4). U.S. Department of Transportation. Retrieved January 14, 2021 from https://www.transportation.gov/fastact
Joshi, N. (2020, December 16). How IoT Can Enhance Public Transportation. BBN Times. Retrieved January 14, 2021 from https://www.bbntimes.com/technology/how-iot-can-enhance-public-transportation
Kann, D. (2020, December 3). Salmon have been dying mysteriously on the West Coast for years. Scientists think a chemical in tires may be responsible. CNN. Retrieved January 14, 2021 from https://www.cnn.com/2020/12/03/us/microplastics-tire-rubber-chemicals-killing-coho-salmon-scn/index.html
Lindsey, R. (2020, August 14). Climate Change: Global Sea Level. NOAA. Retrieved January 14, 2021 from https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level
Parsons, J. (2020, December 16). Shoring Up for Rising Sea Levels. Engineering News-Record. Retrieved January 18, 2021 from https://www.enr.com/articles/50899-shoring-up-for-rising-sea-levels
Regional transportation study suggests ‘micro-transit’. (2020, December 11). Mid Hudson News. Retrieved January 14, 2021 from https://midhudsonnews.com/2020/12/11/regional-transportation-study-suggests-micro-transit/
Road Traffic Injuries and Deaths—A Global Problem. (n.d.) Center for Disease Control and Prevention. Retrieved January 14, 2021 from https://www.cdc.gov/injury/features/global-road-safety/index.html
Rural/Urban Comparison of Traffic Fatalities. (2020, May). NHTSA Traffic Safety Facts 2018 Data. Retrieved January 14, 2021 from https://ruralsafetycenter.org/wp-content/uploads/2020/06/812957.pdf
Sofia, G., E.I. Nikolopoulos, L. Slater. (2020, March 16). It’s Time to Revise Estimates of River Flood Hazards. Eos. Retrieved January 14, 2021 from https://eos.org/opinions/its-time-to-revise-estimates-of-river-flood-hazards
UN Report: Nature’s Dangerous Decline ‘Unprecedented’; Species Extinction Rate ‘Accelerating.’ (2019, May 6). United Nations. Retrieved January 14, 2021 from https://www.un.org/sustainabledevelopment/blog/2019/05/nature-decline-unprecedented-report/
Will infrastructure bend or break under climate stress? (2020, June). McKinsey Global Institute. Retrieved January 18, 2021 from https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability/Our%20Insights/Will%20infrastructure%20bend%20or%20break%20under%20climate%20stress/Will-infrastructure-bend-or-break-under-climate-stress_case-study.pdf